Properties

Label 2-1960-1.1-c1-0-17
Degree $2$
Conductor $1960$
Sign $1$
Analytic cond. $15.6506$
Root an. cond. $3.95609$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5-s + 6·9-s − 5·11-s + 5·13-s − 3·15-s + 7·17-s + 2·19-s − 2·23-s + 25-s + 9·27-s + 7·29-s − 4·31-s − 15·33-s − 6·37-s + 15·39-s + 12·41-s − 2·43-s − 6·45-s − 47-s + 21·51-s + 5·55-s + 6·57-s + 4·59-s − 4·61-s − 5·65-s + 8·67-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.447·5-s + 2·9-s − 1.50·11-s + 1.38·13-s − 0.774·15-s + 1.69·17-s + 0.458·19-s − 0.417·23-s + 1/5·25-s + 1.73·27-s + 1.29·29-s − 0.718·31-s − 2.61·33-s − 0.986·37-s + 2.40·39-s + 1.87·41-s − 0.304·43-s − 0.894·45-s − 0.145·47-s + 2.94·51-s + 0.674·55-s + 0.794·57-s + 0.520·59-s − 0.512·61-s − 0.620·65-s + 0.977·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1960\)    =    \(2^{3} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(15.6506\)
Root analytic conductor: \(3.95609\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1960} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1960,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.197509264\)
\(L(\frac12)\) \(\approx\) \(3.197509264\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
good3 \( 1 - p T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 - 5 T + p T^{2} \)
17 \( 1 - 7 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 - 7 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 12 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 + T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 3 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 13 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.937999621329745000322771267530, −8.332265077163568720704999874857, −7.79995782949092071026536073408, −7.29927337271737671794138924216, −5.99774302994776081413912070293, −5.01872075614464181579565790111, −3.84714819358078169724331248538, −3.28269243130114732472876126998, −2.50550432047388901594073309744, −1.21676181365200032832887757200, 1.21676181365200032832887757200, 2.50550432047388901594073309744, 3.28269243130114732472876126998, 3.84714819358078169724331248538, 5.01872075614464181579565790111, 5.99774302994776081413912070293, 7.29927337271737671794138924216, 7.79995782949092071026536073408, 8.332265077163568720704999874857, 8.937999621329745000322771267530

Graph of the $Z$-function along the critical line