Properties

Label 2-1950-65.9-c1-0-3
Degree $2$
Conductor $1950$
Sign $-0.976 + 0.216i$
Analytic cond. $15.5708$
Root an. cond. $3.94598$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (0.499 + 0.866i)6-s + (−2.73 + 1.58i)7-s + 0.999i·8-s + (0.499 + 0.866i)9-s + (−1.5 + 2.59i)11-s + 0.999i·12-s + (−3.60 + 0.0811i)13-s − 3.16·14-s + (−0.5 + 0.866i)16-s + (−0.725 + 0.418i)17-s + 0.999i·18-s + (−1.58 − 2.73i)19-s + ⋯
L(s)  = 1  + (0.612 + 0.353i)2-s + (0.499 + 0.288i)3-s + (0.249 + 0.433i)4-s + (0.204 + 0.353i)6-s + (−1.03 + 0.597i)7-s + 0.353i·8-s + (0.166 + 0.288i)9-s + (−0.452 + 0.783i)11-s + 0.288i·12-s + (−0.999 + 0.0225i)13-s − 0.845·14-s + (−0.125 + 0.216i)16-s + (−0.175 + 0.101i)17-s + 0.235i·18-s + (−0.362 − 0.628i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.976 + 0.216i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.976 + 0.216i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1950\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $-0.976 + 0.216i$
Analytic conductor: \(15.5708\)
Root analytic conductor: \(3.94598\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1950} (1699, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1950,\ (\ :1/2),\ -0.976 + 0.216i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.120393717\)
\(L(\frac12)\) \(\approx\) \(1.120393717\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.866 - 0.5i)T \)
3 \( 1 + (-0.866 - 0.5i)T \)
5 \( 1 \)
13 \( 1 + (3.60 - 0.0811i)T \)
good7 \( 1 + (2.73 - 1.58i)T + (3.5 - 6.06i)T^{2} \)
11 \( 1 + (1.5 - 2.59i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 + (0.725 - 0.418i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.58 + 2.73i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (1.87 + 1.08i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + (-2.16 + 3.74i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 - 2.83T + 31T^{2} \)
37 \( 1 + (7.34 + 4.24i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + (4.74 - 8.21i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (1.00 - 0.581i)T + (21.5 - 37.2i)T^{2} \)
47 \( 1 + 6iT - 47T^{2} \)
53 \( 1 - 0.837iT - 53T^{2} \)
59 \( 1 + (3 + 5.19i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-2.24 - 3.88i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-3.46 - 2i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (-7.08 - 12.2i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 - 11.3iT - 73T^{2} \)
79 \( 1 + 2.83T + 79T^{2} \)
83 \( 1 - 11.6iT - 83T^{2} \)
89 \( 1 + (0.418 - 0.725i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (15.0 - 8.66i)T + (48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.791284035873679597375247821823, −8.730352392011510986094595955058, −8.055794127664610841065903882501, −7.04684995897120423718618641188, −6.57092008038011821547914952180, −5.47897386851373644978061926642, −4.75767993416467789809376615385, −3.88978171344351672687197468754, −2.79495093576095436910024053678, −2.25998591556192755827862176041, 0.27343008915574141902863494950, 1.83635329930320886194402936645, 2.99884242443314952133893092664, 3.49014746206670299280451517858, 4.54812807489246581205206206197, 5.52111031229390329744402432652, 6.45262151207784725258853364662, 7.05295322089395539394213983947, 7.931819365737631503735368917465, 8.797628975930234960239326360313

Graph of the $Z$-function along the critical line