L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.866 − 0.5i)3-s + (−0.499 + 0.866i)4-s + (−0.866 − 0.499i)6-s + (0.366 − 0.633i)7-s + 0.999·8-s + (0.499 − 0.866i)9-s + (−4.09 + 2.36i)11-s + 0.999i·12-s + (−2.5 + 2.59i)13-s − 0.732·14-s + (−0.5 − 0.866i)16-s + (1.96 + 1.13i)17-s − 0.999·18-s + (1.09 + 0.633i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.499 − 0.288i)3-s + (−0.249 + 0.433i)4-s + (−0.353 − 0.204i)6-s + (0.138 − 0.239i)7-s + 0.353·8-s + (0.166 − 0.288i)9-s + (−1.23 + 0.713i)11-s + 0.288i·12-s + (−0.693 + 0.720i)13-s − 0.195·14-s + (−0.125 − 0.216i)16-s + (0.476 + 0.275i)17-s − 0.235·18-s + (0.251 + 0.145i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.950 + 0.310i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.950 + 0.310i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.531033143\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.531033143\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (2.5 - 2.59i)T \) |
good | 7 | \( 1 + (-0.366 + 0.633i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (4.09 - 2.36i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.96 - 1.13i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.09 - 0.633i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.36 + 3.09i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.23 - 2.13i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 5.46iT - 31T^{2} \) |
| 37 | \( 1 + (-5.23 - 9.06i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-9.86 + 5.69i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.63 - 3.83i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 8.19T + 47T^{2} \) |
| 53 | \( 1 - 0.464iT - 53T^{2} \) |
| 59 | \( 1 + (6.92 + 4i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.598 - 1.03i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.56 - 9.63i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (1.09 + 0.633i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 9.73T + 73T^{2} \) |
| 79 | \( 1 - 9.46T + 79T^{2} \) |
| 83 | \( 1 + 10.1T + 83T^{2} \) |
| 89 | \( 1 + (2.19 - 1.26i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3 + 5.19i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.266162104662247928690438810806, −8.403125668359802578357947687410, −7.52673348538646354278427540788, −7.27433774901175210803273146438, −5.98890025400125078948367871776, −4.82279235618497936441431889487, −4.18257211885833806088839208388, −2.85580381149248382211547205684, −2.32257314621944695857693257046, −1.01860698723468507585142813022,
0.73113531555575922734967081888, 2.47011555471893639618725310927, 3.18451992999944285344997090915, 4.50446652111217597549946894911, 5.40182182218295441464243685702, 5.81582228857043371436225142245, 7.28502724448759995771455678235, 7.60984707284275095391136870674, 8.400347738381861814004683346258, 9.155440612618433380593529679429