Properties

Label 2-1950-13.9-c1-0-13
Degree $2$
Conductor $1950$
Sign $0.522 - 0.852i$
Analytic cond. $15.5708$
Root an. cond. $3.94598$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s + (0.499 + 0.866i)6-s + (1 + 1.73i)7-s + 0.999·8-s + (−0.499 − 0.866i)9-s + (1.5 − 2.59i)11-s − 0.999·12-s + (−1 + 3.46i)13-s − 1.99·14-s + (−0.5 + 0.866i)16-s + (3 + 5.19i)17-s + 0.999·18-s + (−1 − 1.73i)19-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s + (0.204 + 0.353i)6-s + (0.377 + 0.654i)7-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (0.452 − 0.783i)11-s − 0.288·12-s + (−0.277 + 0.960i)13-s − 0.534·14-s + (−0.125 + 0.216i)16-s + (0.727 + 1.26i)17-s + 0.235·18-s + (−0.229 − 0.397i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1950\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $0.522 - 0.852i$
Analytic conductor: \(15.5708\)
Root analytic conductor: \(3.94598\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1950} (451, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1950,\ (\ :1/2),\ 0.522 - 0.852i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.607627732\)
\(L(\frac12)\) \(\approx\) \(1.607627732\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 - 0.866i)T \)
3 \( 1 + (-0.5 + 0.866i)T \)
5 \( 1 \)
13 \( 1 + (1 - 3.46i)T \)
good7 \( 1 + (-1 - 1.73i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-1.5 + 2.59i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 + (-3 - 5.19i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (1 + 1.73i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-1.5 + 2.59i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (1.5 - 2.59i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 - 5T + 31T^{2} \)
37 \( 1 + (3.5 - 6.06i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (3 - 5.19i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (0.5 + 0.866i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 - 3T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + (-4.5 - 7.79i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (1 + 1.73i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-4 + 6.92i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (-6 - 10.3i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + 14T + 73T^{2} \)
79 \( 1 - 5T + 79T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 + (-9 + 15.5i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-7 - 12.1i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.855687079027789533635019197924, −8.634161964045267640506025263673, −7.88107534437379347561434113629, −6.87959660604213375400015393669, −6.33195955562865746099882395958, −5.52698662445578510297768216543, −4.54483583737846357748809669659, −3.43967941462919645926431329884, −2.19705926601569468319071382308, −1.14886637835919495862437369097, 0.74995686453470973490792882461, 2.07712842150609202458567023617, 3.14089040403279847271914274533, 3.97126716701134649686013872680, 4.81673672489245849860941981419, 5.61415099124176273504745045174, 7.07875357228621152288227315050, 7.57591604390623233412175286357, 8.357922371685509524913261117338, 9.288148940744875302903842409668

Graph of the $Z$-function along the critical line