Properties

Label 2-1950-13.10-c1-0-12
Degree $2$
Conductor $1950$
Sign $-0.505 - 0.862i$
Analytic cond. $15.5708$
Root an. cond. $3.94598$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.5 + 0.866i)3-s + (0.499 − 0.866i)4-s + (−0.866 − 0.499i)6-s + (2.53 + 1.46i)7-s + 0.999i·8-s + (−0.499 + 0.866i)9-s + (−0.992 + 0.573i)11-s + 0.999·12-s + (1.86 + 3.08i)13-s − 2.93·14-s + (−0.5 − 0.866i)16-s + (0.276 − 0.478i)17-s − 0.999i·18-s + (0.723 + 0.417i)19-s + ⋯
L(s)  = 1  + (−0.612 + 0.353i)2-s + (0.288 + 0.499i)3-s + (0.249 − 0.433i)4-s + (−0.353 − 0.204i)6-s + (0.959 + 0.554i)7-s + 0.353i·8-s + (−0.166 + 0.288i)9-s + (−0.299 + 0.172i)11-s + 0.288·12-s + (0.516 + 0.856i)13-s − 0.783·14-s + (−0.125 − 0.216i)16-s + (0.0670 − 0.116i)17-s − 0.235i·18-s + (0.165 + 0.0958i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.505 - 0.862i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.505 - 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1950\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $-0.505 - 0.862i$
Analytic conductor: \(15.5708\)
Root analytic conductor: \(3.94598\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1950} (751, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1950,\ (\ :1/2),\ -0.505 - 0.862i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.471224700\)
\(L(\frac12)\) \(\approx\) \(1.471224700\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.866 - 0.5i)T \)
3 \( 1 + (-0.5 - 0.866i)T \)
5 \( 1 \)
13 \( 1 + (-1.86 - 3.08i)T \)
good7 \( 1 + (-2.53 - 1.46i)T + (3.5 + 6.06i)T^{2} \)
11 \( 1 + (0.992 - 0.573i)T + (5.5 - 9.52i)T^{2} \)
17 \( 1 + (-0.276 + 0.478i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-0.723 - 0.417i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.496 - 0.859i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-1.03 - 1.79i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 4.36iT - 31T^{2} \)
37 \( 1 + (-7.00 + 4.04i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (9.67 - 5.58i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (3.94 - 6.82i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + 10.9iT - 47T^{2} \)
53 \( 1 - 3.56T + 53T^{2} \)
59 \( 1 + (4.75 + 2.74i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (1.43 - 2.48i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-8.88 + 5.13i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-9.85 - 5.69i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 - 8.19iT - 73T^{2} \)
79 \( 1 - 1.68T + 79T^{2} \)
83 \( 1 - 8.77iT - 83T^{2} \)
89 \( 1 + (3.93 - 2.26i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (-9.19 - 5.30i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.407359030177811013071546250190, −8.456175415644835600291269010127, −8.267270289922420522715410737563, −7.20181239924120418561531662004, −6.39428460201527232730587303997, −5.31956684312731201887210674629, −4.79575850089439906223807936776, −3.64726680760965784826601109940, −2.40734865969103442917687710529, −1.43238180718636798024360585832, 0.66651180522863147606422202421, 1.67837295511563534979634127826, 2.76871414999724915696261623044, 3.73061220168353724013742756851, 4.79341147453097546802569461257, 5.83376841373492762034727415470, 6.77623056027078590174630185158, 7.74521960564382074818143891454, 8.035983088819060992816758686126, 8.765037854348303028572048382962

Graph of the $Z$-function along the critical line