Properties

Label 2-1950-1.1-c1-0-28
Degree $2$
Conductor $1950$
Sign $-1$
Analytic cond. $15.5708$
Root an. cond. $3.94598$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 4·7-s + 8-s + 9-s − 12-s + 13-s − 4·14-s + 16-s + 2·17-s + 18-s + 4·19-s + 4·21-s − 8·23-s − 24-s + 26-s − 27-s − 4·28-s + 2·29-s − 8·31-s + 32-s + 2·34-s + 36-s − 2·37-s + 4·38-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s − 0.288·12-s + 0.277·13-s − 1.06·14-s + 1/4·16-s + 0.485·17-s + 0.235·18-s + 0.917·19-s + 0.872·21-s − 1.66·23-s − 0.204·24-s + 0.196·26-s − 0.192·27-s − 0.755·28-s + 0.371·29-s − 1.43·31-s + 0.176·32-s + 0.342·34-s + 1/6·36-s − 0.328·37-s + 0.648·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1950\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(15.5708\)
Root analytic conductor: \(3.94598\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1950} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 12 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 16 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.885639254269532212463273172123, −7.76012833963266688049677344546, −6.98364770514506832278281425578, −6.22262147189315048770031473031, −5.72891776702969545865105924015, −4.78775988872689082114503509870, −3.64338281315152828869957608361, −3.17435407679286269383526862068, −1.70574857996284630860068955705, 0, 1.70574857996284630860068955705, 3.17435407679286269383526862068, 3.64338281315152828869957608361, 4.78775988872689082114503509870, 5.72891776702969545865105924015, 6.22262147189315048770031473031, 6.98364770514506832278281425578, 7.76012833963266688049677344546, 8.885639254269532212463273172123

Graph of the $Z$-function along the critical line