L(s) = 1 | − 2.82i·2-s + (1.29 + 2.70i)3-s − 4.00·4-s + (4.94 + 0.707i)5-s + (7.65 − 3.65i)6-s + 5i·7-s + (−5.65 + 7i)9-s + (2.00 − 14.0i)10-s + (9.19 + 9.19i)11-s + (−5.17 − 10.8i)12-s + 13i·13-s + 14.1·14-s + (4.48 + 14.3i)15-s − 15.9·16-s + (13.4 − 13.4i)17-s + (19.7 + 16i)18-s + ⋯ |
L(s) = 1 | − 1.41i·2-s + (0.430 + 0.902i)3-s − 1.00·4-s + (0.989 + 0.141i)5-s + (1.27 − 0.609i)6-s + 0.714i·7-s + (−0.628 + 0.777i)9-s + (0.200 − 1.40i)10-s + (0.835 + 0.835i)11-s + (−0.430 − 0.902i)12-s + i·13-s + 1.01·14-s + (0.299 + 0.954i)15-s − 0.999·16-s + (0.790 − 0.790i)17-s + (1.09 + 0.888i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.855 + 0.517i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.855 + 0.517i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.95557 - 0.545339i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.95557 - 0.545339i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.29 - 2.70i)T \) |
| 5 | \( 1 + (-4.94 - 0.707i)T \) |
| 13 | \( 1 - 13iT \) |
good | 2 | \( 1 + 2.82iT - 4T^{2} \) |
| 7 | \( 1 - 5iT - 49T^{2} \) |
| 11 | \( 1 + (-9.19 - 9.19i)T + 121iT^{2} \) |
| 17 | \( 1 + (-13.4 + 13.4i)T - 289iT^{2} \) |
| 19 | \( 1 + (-22 + 22i)T - 361iT^{2} \) |
| 23 | \( 1 + (14.8 + 14.8i)T + 529iT^{2} \) |
| 29 | \( 1 + 38.1T + 841T^{2} \) |
| 31 | \( 1 + (13 + 13i)T + 961iT^{2} \) |
| 37 | \( 1 - 15iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (-24.7 + 24.7i)T - 1.68e3iT^{2} \) |
| 43 | \( 1 + (-17 + 17i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + 72.1T + 2.20e3T^{2} \) |
| 53 | \( 1 + (9.19 - 9.19i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + (-48.0 + 48.0i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 - 67T + 3.72e3T^{2} \) |
| 67 | \( 1 + 100T + 4.48e3T^{2} \) |
| 71 | \( 1 + (37.4 - 37.4i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 + 76T + 5.32e3T^{2} \) |
| 79 | \( 1 - 89iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 93.3T + 6.88e3T^{2} \) |
| 89 | \( 1 + (4.94 - 4.94i)T - 7.92e3iT^{2} \) |
| 97 | \( 1 + 25T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85813531206411174550288209091, −11.30050843573170060686677211526, −10.04850133208157985966521014489, −9.448754754343788795217759755295, −9.039614040141250536433508342698, −7.02380470192875419509232447698, −5.42109723468143709036723745312, −4.23103267147457906194518557479, −2.87654534543550957148819516136, −1.88834231531864293736918129943,
1.38502037939227005404942432402, 3.48536693513666846467911814275, 5.70342643038456322478247373993, 5.99125190313169500402224879531, 7.31291958751473368567482752119, 7.972136456950412413237786555144, 8.983778033987441202315107925259, 10.07024208328800840404546263441, 11.53353261396605113628476495971, 12.84775981696569218941013065500