L(s) = 1 | + 2.82i·2-s + (2.70 + 1.29i)3-s − 4.00·4-s + (−4.94 − 0.707i)5-s + (−3.65 + 7.65i)6-s + 5i·7-s + (5.65 + 7i)9-s + (2.00 − 14.0i)10-s + (−9.19 − 9.19i)11-s + (−10.8 − 5.17i)12-s + 13i·13-s − 14.1·14-s + (−12.4 − 8.31i)15-s − 15.9·16-s + (−13.4 + 13.4i)17-s + (−19.7 + 16i)18-s + ⋯ |
L(s) = 1 | + 1.41i·2-s + (0.902 + 0.430i)3-s − 1.00·4-s + (−0.989 − 0.141i)5-s + (−0.609 + 1.27i)6-s + 0.714i·7-s + (0.628 + 0.777i)9-s + (0.200 − 1.40i)10-s + (−0.835 − 0.835i)11-s + (−0.902 − 0.430i)12-s + i·13-s − 1.01·14-s + (−0.832 − 0.554i)15-s − 0.999·16-s + (−0.790 + 0.790i)17-s + (−1.09 + 0.888i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 + 0.135i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.990 + 0.135i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.102147 - 1.50249i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.102147 - 1.50249i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-2.70 - 1.29i)T \) |
| 5 | \( 1 + (4.94 + 0.707i)T \) |
| 13 | \( 1 - 13iT \) |
good | 2 | \( 1 - 2.82iT - 4T^{2} \) |
| 7 | \( 1 - 5iT - 49T^{2} \) |
| 11 | \( 1 + (9.19 + 9.19i)T + 121iT^{2} \) |
| 17 | \( 1 + (13.4 - 13.4i)T - 289iT^{2} \) |
| 19 | \( 1 + (-22 + 22i)T - 361iT^{2} \) |
| 23 | \( 1 + (-14.8 - 14.8i)T + 529iT^{2} \) |
| 29 | \( 1 - 38.1T + 841T^{2} \) |
| 31 | \( 1 + (13 + 13i)T + 961iT^{2} \) |
| 37 | \( 1 - 15iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (24.7 - 24.7i)T - 1.68e3iT^{2} \) |
| 43 | \( 1 + (-17 + 17i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 - 72.1T + 2.20e3T^{2} \) |
| 53 | \( 1 + (-9.19 + 9.19i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + (48.0 - 48.0i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 - 67T + 3.72e3T^{2} \) |
| 67 | \( 1 + 100T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-37.4 + 37.4i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 + 76T + 5.32e3T^{2} \) |
| 79 | \( 1 - 89iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 93.3T + 6.88e3T^{2} \) |
| 89 | \( 1 + (-4.94 + 4.94i)T - 7.92e3iT^{2} \) |
| 97 | \( 1 + 25T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.28868445223659030958094554047, −11.77257068392913005243677451843, −10.83713741129670159461412427777, −9.097657188866752454971712619584, −8.673767858929156923404660997975, −7.75899826693347072243660340303, −6.87422290070678579695976874908, −5.38504310207685658370972249340, −4.37443223710204944055053514711, −2.80829110743917917383870220929,
0.809907518020263380382782881715, 2.58687963085365855790192409372, 3.50122148280273341279165607823, 4.63379491403698956166341390953, 7.06853647537111344488803599267, 7.70252407730134744849125046187, 8.905905935234667331588780067270, 10.14366368517135418606603618765, 10.67119711996741483897362772942, 11.97851163763056816561553796000