Properties

Label 2-1920-40.29-c1-0-37
Degree $2$
Conductor $1920$
Sign $0.632 + 0.774i$
Analytic cond. $15.3312$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + (1.73 − 1.41i)5-s + 9-s + 3.46·13-s + (1.73 − 1.41i)15-s − 4.89i·17-s − 4.89i·19-s + 2.82i·23-s + (0.999 − 4.89i)25-s + 27-s + 2.82i·29-s − 6.92·31-s − 3.46·37-s + 3.46·39-s + 6·41-s + ⋯
L(s)  = 1  + 0.577·3-s + (0.774 − 0.632i)5-s + 0.333·9-s + 0.960·13-s + (0.447 − 0.365i)15-s − 1.18i·17-s − 1.12i·19-s + 0.589i·23-s + (0.199 − 0.979i)25-s + 0.192·27-s + 0.525i·29-s − 1.24·31-s − 0.569·37-s + 0.554·39-s + 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.632 + 0.774i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.632 + 0.774i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1920\)    =    \(2^{7} \cdot 3 \cdot 5\)
Sign: $0.632 + 0.774i$
Analytic conductor: \(15.3312\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1920} (1729, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1920,\ (\ :1/2),\ 0.632 + 0.774i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.580346512\)
\(L(\frac12)\) \(\approx\) \(2.580346512\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + (-1.73 + 1.41i)T \)
good7 \( 1 - 7T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 - 3.46T + 13T^{2} \)
17 \( 1 + 4.89iT - 17T^{2} \)
19 \( 1 + 4.89iT - 19T^{2} \)
23 \( 1 - 2.82iT - 23T^{2} \)
29 \( 1 - 2.82iT - 29T^{2} \)
31 \( 1 + 6.92T + 31T^{2} \)
37 \( 1 + 3.46T + 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + 2.82iT - 47T^{2} \)
53 \( 1 + 3.46T + 53T^{2} \)
59 \( 1 - 9.79iT - 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 - 4T + 67T^{2} \)
71 \( 1 - 13.8T + 71T^{2} \)
73 \( 1 + 9.79iT - 73T^{2} \)
79 \( 1 + 6.92T + 79T^{2} \)
83 \( 1 + 12T + 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 9.79iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.128520846640038780594352508296, −8.567868714168875073794809630814, −7.51367166177884435848255877464, −6.82940786572937409989699413147, −5.77525976990973628426618540501, −5.09950408030895172221473900892, −4.13817831664393473590532665697, −3.06879426769570744407815693824, −2.08962025653039169046013639394, −0.938429746541981741499062042908, 1.47878057193348906174539919589, 2.33746022963964035057425243479, 3.47904060812015272775887617782, 4.09963471401582069397778877666, 5.54807531185475514159424860584, 6.10995253655286131337639419282, 6.90351833114970081178327778628, 7.86844229624830578425673780624, 8.522547502561239657054099929122, 9.321898112610400730244374546737

Graph of the $Z$-function along the critical line