L(s) = 1 | − i·3-s + 5-s + 2i·7-s − 9-s − i·15-s + 2·21-s + 25-s + i·27-s + 2·29-s + 2i·35-s − 45-s − 3·49-s − 2i·63-s − i·75-s + 81-s + ⋯ |
L(s) = 1 | − i·3-s + 5-s + 2i·7-s − 9-s − i·15-s + 2·21-s + 25-s + i·27-s + 2·29-s + 2i·35-s − 45-s − 3·49-s − 2i·63-s − i·75-s + 81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.337161091\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.337161091\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 - T \) |
good | 7 | \( 1 - 2iT - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - 2T + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + 2iT - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.158699775033595978465826499023, −8.658403263914324548882351756993, −8.007443160996929553136465974534, −6.77213597953916518965291958308, −6.21026124085781930824898870166, −5.58909745830828812005455090872, −4.88752387105372933368582222530, −2.97311842504770788806316327359, −2.45206276354445370766216181844, −1.52671242857185594892421627128,
1.11462813380787190878932701799, 2.69067008155724674189853371907, 3.69336988928310007198067120277, 4.49269003201539288075684986284, 5.15471077492020672379834550451, 6.27471380149531546630502330110, 6.88572080223347908746394241417, 7.916606579260750959585291395642, 8.729735099517333899856591114411, 9.722211238201394823824434273095