Properties

Label 2-1920-1.1-c1-0-29
Degree $2$
Conductor $1920$
Sign $-1$
Analytic cond. $15.3312$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 9-s − 2·11-s − 4·13-s − 15-s + 25-s + 27-s − 2·29-s − 10·31-s − 2·33-s − 4·37-s − 4·39-s + 6·41-s − 4·43-s − 45-s − 7·49-s − 2·53-s + 2·55-s − 6·59-s − 6·61-s + 4·65-s − 4·67-s − 8·71-s + 14·73-s + 75-s − 2·79-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1/3·9-s − 0.603·11-s − 1.10·13-s − 0.258·15-s + 1/5·25-s + 0.192·27-s − 0.371·29-s − 1.79·31-s − 0.348·33-s − 0.657·37-s − 0.640·39-s + 0.937·41-s − 0.609·43-s − 0.149·45-s − 49-s − 0.274·53-s + 0.269·55-s − 0.781·59-s − 0.768·61-s + 0.496·65-s − 0.488·67-s − 0.949·71-s + 1.63·73-s + 0.115·75-s − 0.225·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1920\)    =    \(2^{7} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(15.3312\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.889712831101859103804444847531, −7.80559821824428200433846976691, −7.54557047142823067823597904482, −6.60385394707253465783797985484, −5.43724899639797774658826630136, −4.70481521934788449769197313811, −3.70081218601629080212569355255, −2.83139366584180811615185959512, −1.81084238627342889349146058738, 0, 1.81084238627342889349146058738, 2.83139366584180811615185959512, 3.70081218601629080212569355255, 4.70481521934788449769197313811, 5.43724899639797774658826630136, 6.60385394707253465783797985484, 7.54557047142823067823597904482, 7.80559821824428200433846976691, 8.889712831101859103804444847531

Graph of the $Z$-function along the critical line