Properties

Label 2-1920-1.1-c1-0-28
Degree $2$
Conductor $1920$
Sign $-1$
Analytic cond. $15.3312$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·7-s + 9-s + 2·11-s − 2·13-s − 15-s − 2·17-s − 2·19-s − 2·21-s − 2·23-s + 25-s + 27-s − 6·29-s − 4·31-s + 2·33-s + 2·35-s + 2·37-s − 2·39-s − 10·41-s + 8·43-s − 45-s − 2·47-s − 3·49-s − 2·51-s + 6·53-s − 2·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s + 0.603·11-s − 0.554·13-s − 0.258·15-s − 0.485·17-s − 0.458·19-s − 0.436·21-s − 0.417·23-s + 1/5·25-s + 0.192·27-s − 1.11·29-s − 0.718·31-s + 0.348·33-s + 0.338·35-s + 0.328·37-s − 0.320·39-s − 1.56·41-s + 1.21·43-s − 0.149·45-s − 0.291·47-s − 3/7·49-s − 0.280·51-s + 0.824·53-s − 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1920\)    =    \(2^{7} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(15.3312\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.935666680146898108947197436754, −8.037322825083629513883200764970, −7.24670428133688603846896880841, −6.60668142823229757211620489443, −5.66052745164546366174049172250, −4.46902289837185323150742647792, −3.77169781021970174248128836681, −2.88684999428318360090105085232, −1.76828397665908917268536961976, 0, 1.76828397665908917268536961976, 2.88684999428318360090105085232, 3.77169781021970174248128836681, 4.46902289837185323150742647792, 5.66052745164546366174049172250, 6.60668142823229757211620489443, 7.24670428133688603846896880841, 8.037322825083629513883200764970, 8.935666680146898108947197436754

Graph of the $Z$-function along the critical line