Properties

Label 2-192-8.5-c3-0-8
Degree $2$
Conductor $192$
Sign $-0.258 + 0.965i$
Analytic cond. $11.3283$
Root an. cond. $3.36576$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3i·3-s + 3.46i·5-s − 24.2·7-s − 9·9-s − 48i·11-s − 41.5i·13-s − 10.3·15-s + 54·17-s − 4i·19-s − 72.7i·21-s − 173.·23-s + 113·25-s − 27i·27-s − 162. i·29-s − 58.8·31-s + ⋯
L(s)  = 1  + 0.577i·3-s + 0.309i·5-s − 1.30·7-s − 0.333·9-s − 1.31i·11-s − 0.886i·13-s − 0.178·15-s + 0.770·17-s − 0.0482i·19-s − 0.755i·21-s − 1.57·23-s + 0.904·25-s − 0.192i·27-s − 1.04i·29-s − 0.341·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.258 + 0.965i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.258 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(192\)    =    \(2^{6} \cdot 3\)
Sign: $-0.258 + 0.965i$
Analytic conductor: \(11.3283\)
Root analytic conductor: \(3.36576\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{192} (97, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 192,\ (\ :3/2),\ -0.258 + 0.965i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.393621 - 0.512977i\)
\(L(\frac12)\) \(\approx\) \(0.393621 - 0.512977i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3iT \)
good5 \( 1 - 3.46iT - 125T^{2} \)
7 \( 1 + 24.2T + 343T^{2} \)
11 \( 1 + 48iT - 1.33e3T^{2} \)
13 \( 1 + 41.5iT - 2.19e3T^{2} \)
17 \( 1 - 54T + 4.91e3T^{2} \)
19 \( 1 + 4iT - 6.85e3T^{2} \)
23 \( 1 + 173.T + 1.21e4T^{2} \)
29 \( 1 + 162. iT - 2.43e4T^{2} \)
31 \( 1 + 58.8T + 2.97e4T^{2} \)
37 \( 1 + 325. iT - 5.06e4T^{2} \)
41 \( 1 + 294T + 6.89e4T^{2} \)
43 \( 1 + 188iT - 7.95e4T^{2} \)
47 \( 1 + 505.T + 1.03e5T^{2} \)
53 \( 1 - 744. iT - 1.48e5T^{2} \)
59 \( 1 + 252iT - 2.05e5T^{2} \)
61 \( 1 - 90.0iT - 2.26e5T^{2} \)
67 \( 1 - 628iT - 3.00e5T^{2} \)
71 \( 1 - 6.92T + 3.57e5T^{2} \)
73 \( 1 + 1.00e3T + 3.89e5T^{2} \)
79 \( 1 - 1.34e3T + 4.93e5T^{2} \)
83 \( 1 + 720iT - 5.71e5T^{2} \)
89 \( 1 + 1.48e3T + 7.04e5T^{2} \)
97 \( 1 - 1.82e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.74906957341952772114439369007, −10.57523233734016695795849167158, −9.982375509488921004881448544853, −8.900212403660375717467788132052, −7.79097429715000858511811352523, −6.31825646262571470144875020913, −5.57711194019405731154985331277, −3.75582166561291065245240375078, −2.94003332498992884927593853240, −0.27466880455220668469305860575, 1.73050350193356663336008338961, 3.35834373625043182989910255615, 4.86743375806326187067162169522, 6.36508021614066942391817636056, 7.04212313399442265602401706554, 8.297502204857221619160732317865, 9.537358612811468881238352832863, 10.12230205031406284082650887376, 11.72531725301503923798767494187, 12.46058063972893470409135604960

Graph of the $Z$-function along the critical line