Properties

Label 2-192-64.61-c1-0-10
Degree $2$
Conductor $192$
Sign $0.976 + 0.217i$
Analytic cond. $1.53312$
Root an. cond. $1.23819$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.05 − 0.945i)2-s + (−0.195 + 0.980i)3-s + (0.211 − 1.98i)4-s + (3.63 + 2.42i)5-s + (0.722 + 1.21i)6-s + (−2.55 + 1.05i)7-s + (−1.65 − 2.29i)8-s + (−0.923 − 0.382i)9-s + (6.11 − 0.882i)10-s + (0.184 − 0.0366i)11-s + (1.90 + 0.595i)12-s + (2.04 − 1.36i)13-s + (−1.68 + 3.53i)14-s + (−3.08 + 3.08i)15-s + (−3.91 − 0.840i)16-s + (−3.38 − 3.38i)17-s + ⋯
L(s)  = 1  + (0.743 − 0.668i)2-s + (−0.112 + 0.566i)3-s + (0.105 − 0.994i)4-s + (1.62 + 1.08i)5-s + (0.294 + 0.496i)6-s + (−0.966 + 0.400i)7-s + (−0.586 − 0.809i)8-s + (−0.307 − 0.127i)9-s + (1.93 − 0.279i)10-s + (0.0556 − 0.0110i)11-s + (0.551 + 0.171i)12-s + (0.567 − 0.379i)13-s + (−0.450 + 0.943i)14-s + (−0.797 + 0.797i)15-s + (−0.977 − 0.210i)16-s + (−0.821 − 0.821i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.976 + 0.217i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.976 + 0.217i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(192\)    =    \(2^{6} \cdot 3\)
Sign: $0.976 + 0.217i$
Analytic conductor: \(1.53312\)
Root analytic conductor: \(1.23819\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{192} (61, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 192,\ (\ :1/2),\ 0.976 + 0.217i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.82061 - 0.200334i\)
\(L(\frac12)\) \(\approx\) \(1.82061 - 0.200334i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.05 + 0.945i)T \)
3 \( 1 + (0.195 - 0.980i)T \)
good5 \( 1 + (-3.63 - 2.42i)T + (1.91 + 4.61i)T^{2} \)
7 \( 1 + (2.55 - 1.05i)T + (4.94 - 4.94i)T^{2} \)
11 \( 1 + (-0.184 + 0.0366i)T + (10.1 - 4.20i)T^{2} \)
13 \( 1 + (-2.04 + 1.36i)T + (4.97 - 12.0i)T^{2} \)
17 \( 1 + (3.38 + 3.38i)T + 17iT^{2} \)
19 \( 1 + (1.72 + 2.57i)T + (-7.27 + 17.5i)T^{2} \)
23 \( 1 + (-1.69 + 4.10i)T + (-16.2 - 16.2i)T^{2} \)
29 \( 1 + (6.98 + 1.38i)T + (26.7 + 11.0i)T^{2} \)
31 \( 1 - 1.32iT - 31T^{2} \)
37 \( 1 + (0.633 - 0.948i)T + (-14.1 - 34.1i)T^{2} \)
41 \( 1 + (1.49 - 3.61i)T + (-28.9 - 28.9i)T^{2} \)
43 \( 1 + (-2.50 - 12.5i)T + (-39.7 + 16.4i)T^{2} \)
47 \( 1 + (-1.12 - 1.12i)T + 47iT^{2} \)
53 \( 1 + (-6.47 + 1.28i)T + (48.9 - 20.2i)T^{2} \)
59 \( 1 + (10.9 + 7.34i)T + (22.5 + 54.5i)T^{2} \)
61 \( 1 + (-2.31 + 11.6i)T + (-56.3 - 23.3i)T^{2} \)
67 \( 1 + (0.0474 - 0.238i)T + (-61.8 - 25.6i)T^{2} \)
71 \( 1 + (-11.1 + 4.62i)T + (50.2 - 50.2i)T^{2} \)
73 \( 1 + (-5.11 - 2.11i)T + (51.6 + 51.6i)T^{2} \)
79 \( 1 + (-1.69 + 1.69i)T - 79iT^{2} \)
83 \( 1 + (-3.46 - 5.18i)T + (-31.7 + 76.6i)T^{2} \)
89 \( 1 + (0.185 + 0.448i)T + (-62.9 + 62.9i)T^{2} \)
97 \( 1 - 2.48iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.81034590774337445737851839924, −11.19347083605123598627105262823, −10.71786182502947185588314010201, −9.623776492725962040262617662623, −9.269426349410416840993575443790, −6.62049230885215522971419414286, −6.17173679566039281913477953197, −5.02482688322831913633561899275, −3.26708419203380631343845729739, −2.38722642912428226755812687499, 1.98571574005298247852492220874, 3.94016218587766693607129432601, 5.49168688341988010441766846605, 6.11331134985206981249851381153, 7.05117739471814623426959511490, 8.604843885863043484046872904047, 9.281134467192606510586081025428, 10.61281238815935577969971689320, 12.15974823791630877516122970790, 12.98999668653053912320783083484

Graph of the $Z$-function along the critical line