# Properties

 Label 2-192-4.3-c8-0-19 Degree $2$ Conductor $192$ Sign $1$ Analytic cond. $78.2166$ Root an. cond. $8.84402$ Motivic weight $8$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 − 46.7i·3-s + 1.15e3·5-s − 1.31e3i·7-s − 2.18e3·9-s + 1.50e4i·11-s + 3.08e4·13-s − 5.42e4i·15-s + 4.64e4·17-s + 6.91e4i·19-s − 6.13e4·21-s + 3.93e5i·23-s + 9.53e5·25-s + 1.02e5i·27-s + 7.74e5·29-s + 4.66e5i·31-s + ⋯
 L(s)  = 1 − 0.577i·3-s + 1.85·5-s − 0.546i·7-s − 0.333·9-s + 1.02i·11-s + 1.08·13-s − 1.07i·15-s + 0.556·17-s + 0.530i·19-s − 0.315·21-s + 1.40i·23-s + 2.44·25-s + 0.192i·27-s + 1.09·29-s + 0.505i·31-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(9-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$192$$    =    $$2^{6} \cdot 3$$ Sign: $1$ Analytic conductor: $$78.2166$$ Root analytic conductor: $$8.84402$$ Motivic weight: $$8$$ Rational: no Arithmetic: yes Character: $\chi_{192} (127, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 192,\ (\ :4),\ 1)$$

## Particular Values

 $$L(\frac{9}{2})$$ $$\approx$$ $$3.493442293$$ $$L(\frac12)$$ $$\approx$$ $$3.493442293$$ $$L(5)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1 + 46.7iT$$
good5 $$1 - 1.15e3T + 3.90e5T^{2}$$
7 $$1 + 1.31e3iT - 5.76e6T^{2}$$
11 $$1 - 1.50e4iT - 2.14e8T^{2}$$
13 $$1 - 3.08e4T + 8.15e8T^{2}$$
17 $$1 - 4.64e4T + 6.97e9T^{2}$$
19 $$1 - 6.91e4iT - 1.69e10T^{2}$$
23 $$1 - 3.93e5iT - 7.83e10T^{2}$$
29 $$1 - 7.74e5T + 5.00e11T^{2}$$
31 $$1 - 4.66e5iT - 8.52e11T^{2}$$
37 $$1 + 4.99e5T + 3.51e12T^{2}$$
41 $$1 + 3.81e6T + 7.98e12T^{2}$$
43 $$1 - 2.22e6iT - 1.16e13T^{2}$$
47 $$1 - 7.92e6iT - 2.38e13T^{2}$$
53 $$1 + 1.22e7T + 6.22e13T^{2}$$
59 $$1 + 2.04e7iT - 1.46e14T^{2}$$
61 $$1 + 1.27e7T + 1.91e14T^{2}$$
67 $$1 - 1.90e7iT - 4.06e14T^{2}$$
71 $$1 + 4.88e7iT - 6.45e14T^{2}$$
73 $$1 - 2.46e7T + 8.06e14T^{2}$$
79 $$1 - 6.22e7iT - 1.51e15T^{2}$$
83 $$1 - 7.55e6iT - 2.25e15T^{2}$$
89 $$1 - 7.40e7T + 3.93e15T^{2}$$
97 $$1 - 1.23e8T + 7.83e15T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$