Properties

Label 2-192-4.3-c8-0-13
Degree $2$
Conductor $192$
Sign $-i$
Analytic cond. $78.2166$
Root an. cond. $8.84402$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 46.7i·3-s + 1.08e3·5-s − 426. i·7-s − 2.18e3·9-s − 1.42e4i·11-s − 3.42e4·13-s + 5.07e4i·15-s + 2.00e4·17-s + 1.96e5i·19-s + 1.99e4·21-s + 3.47e5i·23-s + 7.85e5·25-s − 1.02e5i·27-s − 1.00e6·29-s + 1.63e6i·31-s + ⋯
L(s)  = 1  + 0.577i·3-s + 1.73·5-s − 0.177i·7-s − 0.333·9-s − 0.972i·11-s − 1.19·13-s + 1.00i·15-s + 0.240·17-s + 1.50i·19-s + 0.102·21-s + 1.24i·23-s + 2.01·25-s − 0.192i·27-s − 1.41·29-s + 1.77i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(192\)    =    \(2^{6} \cdot 3\)
Sign: $-i$
Analytic conductor: \(78.2166\)
Root analytic conductor: \(8.84402\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{192} (127, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 192,\ (\ :4),\ -i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(2.518623523\)
\(L(\frac12)\) \(\approx\) \(2.518623523\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 46.7iT \)
good5 \( 1 - 1.08e3T + 3.90e5T^{2} \)
7 \( 1 + 426. iT - 5.76e6T^{2} \)
11 \( 1 + 1.42e4iT - 2.14e8T^{2} \)
13 \( 1 + 3.42e4T + 8.15e8T^{2} \)
17 \( 1 - 2.00e4T + 6.97e9T^{2} \)
19 \( 1 - 1.96e5iT - 1.69e10T^{2} \)
23 \( 1 - 3.47e5iT - 7.83e10T^{2} \)
29 \( 1 + 1.00e6T + 5.00e11T^{2} \)
31 \( 1 - 1.63e6iT - 8.52e11T^{2} \)
37 \( 1 - 7.91e5T + 3.51e12T^{2} \)
41 \( 1 - 1.36e6T + 7.98e12T^{2} \)
43 \( 1 + 1.50e6iT - 1.16e13T^{2} \)
47 \( 1 - 1.49e6iT - 2.38e13T^{2} \)
53 \( 1 - 8.94e6T + 6.22e13T^{2} \)
59 \( 1 + 8.50e6iT - 1.46e14T^{2} \)
61 \( 1 - 1.78e7T + 1.91e14T^{2} \)
67 \( 1 - 3.49e7iT - 4.06e14T^{2} \)
71 \( 1 - 3.84e7iT - 6.45e14T^{2} \)
73 \( 1 - 2.11e7T + 8.06e14T^{2} \)
79 \( 1 - 3.67e7iT - 1.51e15T^{2} \)
83 \( 1 - 2.94e7iT - 2.25e15T^{2} \)
89 \( 1 + 3.70e7T + 3.93e15T^{2} \)
97 \( 1 - 1.26e8T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.05306139204808692579243420425, −10.06067041953925074004428417668, −9.626398969845603866847308305355, −8.549674946298829889350263968434, −7.12401087972544295632408571539, −5.71338565888636397984931254552, −5.38535395712677001240005840583, −3.68949882137309073259797639560, −2.43047941327878887063326314112, −1.25059674180084985943678405595, 0.56177992213494376309296461764, 2.11894964201724500502302952162, 2.44925054470023559223991053988, 4.67940846284500972896737127529, 5.65492100922759832823071253105, 6.65958740605970464534600683504, 7.55197640125890705974974998999, 9.137630839435625969443693339922, 9.647669269304853471068082791840, 10.67003694022040941302748093943

Graph of the $Z$-function along the critical line