Properties

Label 2-192-4.3-c8-0-11
Degree $2$
Conductor $192$
Sign $-i$
Analytic cond. $78.2166$
Root an. cond. $8.84402$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 46.7i·3-s + 90·5-s − 921. i·7-s − 2.18e3·9-s + 5.17e3i·11-s + 1.63e4·13-s + 4.20e3i·15-s − 4.26e4·17-s − 1.14e5i·19-s + 4.30e4·21-s + 2.50e5i·23-s − 3.82e5·25-s − 1.02e5i·27-s + 1.27e6·29-s + 5.12e5i·31-s + ⋯
L(s)  = 1  + 0.577i·3-s + 0.144·5-s − 0.383i·7-s − 0.333·9-s + 0.353i·11-s + 0.572·13-s + 0.0831i·15-s − 0.510·17-s − 0.878i·19-s + 0.221·21-s + 0.895i·23-s − 0.979·25-s − 0.192i·27-s + 1.79·29-s + 0.555i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(192\)    =    \(2^{6} \cdot 3\)
Sign: $-i$
Analytic conductor: \(78.2166\)
Root analytic conductor: \(8.84402\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{192} (127, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 192,\ (\ :4),\ -i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(1.811652174\)
\(L(\frac12)\) \(\approx\) \(1.811652174\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 46.7iT \)
good5 \( 1 - 90T + 3.90e5T^{2} \)
7 \( 1 + 921. iT - 5.76e6T^{2} \)
11 \( 1 - 5.17e3iT - 2.14e8T^{2} \)
13 \( 1 - 1.63e4T + 8.15e8T^{2} \)
17 \( 1 + 4.26e4T + 6.97e9T^{2} \)
19 \( 1 + 1.14e5iT - 1.69e10T^{2} \)
23 \( 1 - 2.50e5iT - 7.83e10T^{2} \)
29 \( 1 - 1.27e6T + 5.00e11T^{2} \)
31 \( 1 - 5.12e5iT - 8.52e11T^{2} \)
37 \( 1 - 2.26e6T + 3.51e12T^{2} \)
41 \( 1 + 8.72e5T + 7.98e12T^{2} \)
43 \( 1 + 1.66e6iT - 1.16e13T^{2} \)
47 \( 1 + 7.97e5iT - 2.38e13T^{2} \)
53 \( 1 + 1.06e6T + 6.22e13T^{2} \)
59 \( 1 - 2.33e7iT - 1.46e14T^{2} \)
61 \( 1 + 1.53e7T + 1.91e14T^{2} \)
67 \( 1 - 9.18e6iT - 4.06e14T^{2} \)
71 \( 1 + 2.28e7iT - 6.45e14T^{2} \)
73 \( 1 - 1.89e7T + 8.06e14T^{2} \)
79 \( 1 - 5.41e7iT - 1.51e15T^{2} \)
83 \( 1 - 6.52e7iT - 2.25e15T^{2} \)
89 \( 1 + 8.98e7T + 3.93e15T^{2} \)
97 \( 1 + 7.57e7T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.17663564458558892906729665674, −10.31493519699668690291686287187, −9.401717918600168033619578215770, −8.435221770366683672513051494272, −7.20810376766686490097042406009, −6.08503495102460841810916594249, −4.84522668961560352330140313436, −3.87562757559830239112091574006, −2.56096444042116705894423438857, −1.02725113268760986129137798978, 0.48186481734569619373559880614, 1.77223625393023371823959703720, 2.94189272429569635697947637394, 4.37989315803777759435320920620, 5.84501023397055437824002751095, 6.51101887454120145175148926990, 7.909163405288233887328323742015, 8.623849205015333757415804978052, 9.807115753948319195432182315175, 10.92331027106690402170520008737

Graph of the $Z$-function along the critical line