Properties

Label 2-192-4.3-c4-0-12
Degree $2$
Conductor $192$
Sign $i$
Analytic cond. $19.8470$
Root an. cond. $4.45500$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.19i·3-s + 42·5-s − 76.2i·7-s − 27·9-s − 20.7i·11-s + 182·13-s − 218. i·15-s − 246·17-s − 117. i·19-s − 396·21-s + 748. i·23-s + 1.13e3·25-s + 140. i·27-s − 78·29-s − 1.47e3i·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + 1.67·5-s − 1.55i·7-s − 0.333·9-s − 0.171i·11-s + 1.07·13-s − 0.969i·15-s − 0.851·17-s − 0.326i·19-s − 0.897·21-s + 1.41i·23-s + 1.82·25-s + 0.192i·27-s − 0.0927·29-s − 1.53i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(192\)    =    \(2^{6} \cdot 3\)
Sign: $i$
Analytic conductor: \(19.8470\)
Root analytic conductor: \(4.45500\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{192} (127, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 192,\ (\ :2),\ i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(2.456277875\)
\(L(\frac12)\) \(\approx\) \(2.456277875\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 5.19iT \)
good5 \( 1 - 42T + 625T^{2} \)
7 \( 1 + 76.2iT - 2.40e3T^{2} \)
11 \( 1 + 20.7iT - 1.46e4T^{2} \)
13 \( 1 - 182T + 2.85e4T^{2} \)
17 \( 1 + 246T + 8.35e4T^{2} \)
19 \( 1 + 117. iT - 1.30e5T^{2} \)
23 \( 1 - 748. iT - 2.79e5T^{2} \)
29 \( 1 + 78T + 7.07e5T^{2} \)
31 \( 1 + 1.47e3iT - 9.23e5T^{2} \)
37 \( 1 + 530T + 1.87e6T^{2} \)
41 \( 1 + 918T + 2.82e6T^{2} \)
43 \( 1 + 852. iT - 3.41e6T^{2} \)
47 \( 1 + 3.78e3iT - 4.87e6T^{2} \)
53 \( 1 - 4.62e3T + 7.89e6T^{2} \)
59 \( 1 + 228. iT - 1.21e7T^{2} \)
61 \( 1 + 1.34e3T + 1.38e7T^{2} \)
67 \( 1 - 1.08e3iT - 2.01e7T^{2} \)
71 \( 1 - 1.82e3iT - 2.54e7T^{2} \)
73 \( 1 + 926T + 2.83e7T^{2} \)
79 \( 1 - 4.39e3iT - 3.89e7T^{2} \)
83 \( 1 - 1.19e4iT - 4.74e7T^{2} \)
89 \( 1 - 1.15e4T + 6.27e7T^{2} \)
97 \( 1 + 1.31e4T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44869314188011670224108434895, −10.58544026464937081782700756380, −9.726960182644347710969659176516, −8.660633982726283366491846776974, −7.27533644260360429654371665584, −6.43757257973687223372246432545, −5.43583839228069757058869336980, −3.78998382436171677216514922442, −2.04714792667969420759364680045, −0.913792393046645537420334612113, 1.80115705674542605631928302001, 2.87635204302111670242438518160, 4.80960687606415568008633795096, 5.83282924104122986019724831100, 6.44921764496777643039157612605, 8.687702816114288192447939600830, 8.975716046987329542309371260056, 10.09606577228384718873383102606, 10.90523813072270801231993214845, 12.19555631875313904409188874271

Graph of the $Z$-function along the critical line