L(s) = 1 | + i·3-s − 9-s − 2i·19-s − 25-s − i·27-s + 2i·43-s − 49-s + 2·57-s + 2i·67-s + 2·73-s − i·75-s + 81-s − 2·97-s + ⋯ |
L(s) = 1 | + i·3-s − 9-s − 2i·19-s − 25-s − i·27-s + 2i·43-s − 49-s + 2·57-s + 2i·67-s + 2·73-s − i·75-s + 81-s − 2·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6710956517\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6710956517\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - iT \) |
good | 5 | \( 1 + T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + 2iT - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - 2iT - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 2iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 2T + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + 2T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.97722363016898008735771969506, −11.59840981927542118533216491975, −11.01370503130495906728019173891, −9.849516072503568628474637697775, −9.126967973020062447789672133728, −8.018139637964617364667919671293, −6.58586934399064214388814283248, −5.28239110236326378801837962126, −4.24790763788515601708158344657, −2.81568032663380696799101060580,
1.90019379025942779197305225894, 3.62954125332872921564855330771, 5.47366894557275997654851625383, 6.43322565428916493073505123627, 7.63017294754426849302037950971, 8.369648201467567148737270093994, 9.666114570195211975042793979673, 10.82222367714644356398020955651, 11.96652054339395058620004956477, 12.50641606759299101579290172988