| L(s) = 1 | + (33.0 + 33.0i)3-s + (691. + 691. i)5-s + 1.74e3·7-s + 2.18e3i·9-s + (−4.44e3 + 4.44e3i)11-s + (−2.60e4 + 2.60e4i)13-s + 4.57e4i·15-s − 3.35e4·17-s + (−1.56e5 − 1.56e5i)19-s + (5.77e4 + 5.77e4i)21-s − 4.53e5·23-s + 5.65e5i·25-s + (−7.23e4 + 7.23e4i)27-s + (−3.89e5 + 3.89e5i)29-s + 5.54e5i·31-s + ⋯ |
| L(s) = 1 | + (0.408 + 0.408i)3-s + (1.10 + 1.10i)5-s + 0.727·7-s + 0.333i·9-s + (−0.303 + 0.303i)11-s + (−0.912 + 0.912i)13-s + 0.903i·15-s − 0.401·17-s + (−1.20 − 1.20i)19-s + (0.296 + 0.296i)21-s − 1.62·23-s + 1.44i·25-s + (−0.136 + 0.136i)27-s + (−0.551 + 0.551i)29-s + 0.600i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0156i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.999 + 0.0156i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{9}{2})\) |
\(\approx\) |
\(1.636433290\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.636433290\) |
| \(L(5)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-33.0 - 33.0i)T \) |
| good | 5 | \( 1 + (-691. - 691. i)T + 3.90e5iT^{2} \) |
| 7 | \( 1 - 1.74e3T + 5.76e6T^{2} \) |
| 11 | \( 1 + (4.44e3 - 4.44e3i)T - 2.14e8iT^{2} \) |
| 13 | \( 1 + (2.60e4 - 2.60e4i)T - 8.15e8iT^{2} \) |
| 17 | \( 1 + 3.35e4T + 6.97e9T^{2} \) |
| 19 | \( 1 + (1.56e5 + 1.56e5i)T + 1.69e10iT^{2} \) |
| 23 | \( 1 + 4.53e5T + 7.83e10T^{2} \) |
| 29 | \( 1 + (3.89e5 - 3.89e5i)T - 5.00e11iT^{2} \) |
| 31 | \( 1 - 5.54e5iT - 8.52e11T^{2} \) |
| 37 | \( 1 + (-4.85e4 - 4.85e4i)T + 3.51e12iT^{2} \) |
| 41 | \( 1 + 4.43e6iT - 7.98e12T^{2} \) |
| 43 | \( 1 + (-2.65e6 + 2.65e6i)T - 1.16e13iT^{2} \) |
| 47 | \( 1 - 5.54e6iT - 2.38e13T^{2} \) |
| 53 | \( 1 + (-3.88e6 - 3.88e6i)T + 6.22e13iT^{2} \) |
| 59 | \( 1 + (3.06e6 - 3.06e6i)T - 1.46e14iT^{2} \) |
| 61 | \( 1 + (-1.78e7 + 1.78e7i)T - 1.91e14iT^{2} \) |
| 67 | \( 1 + (-2.35e7 - 2.35e7i)T + 4.06e14iT^{2} \) |
| 71 | \( 1 + 9.17e6T + 6.45e14T^{2} \) |
| 73 | \( 1 + 1.49e7iT - 8.06e14T^{2} \) |
| 79 | \( 1 - 3.39e7iT - 1.51e15T^{2} \) |
| 83 | \( 1 + (1.29e7 + 1.29e7i)T + 2.25e15iT^{2} \) |
| 89 | \( 1 - 7.81e7iT - 3.93e15T^{2} \) |
| 97 | \( 1 - 3.80e7T + 7.83e15T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22758289375708969826262806369, −10.51564147840617889772504675558, −9.669543035537950606954617806113, −8.745571797695591075281682576121, −7.37769246292873375320289534014, −6.51361089818113833873714518852, −5.21504541924128657574545031537, −4.09764388397548432401388067339, −2.41057196548407105247515611739, −2.04267998239496490560400666681,
0.30192022921749236382689654991, 1.63437273950230226274747866471, 2.36182261101880817617851695692, 4.21192921838942027366740825675, 5.37883692171886281176120787126, 6.18191593803240281928198466296, 7.911327746829711372369308089166, 8.344186740855366593708229751271, 9.582480895845738513550224235211, 10.30210949167316593511717882786