| L(s) = 1 | + (33.0 + 33.0i)3-s + (−333. − 333. i)5-s + 1.76e3·7-s + 2.18e3i·9-s + (5.11e3 − 5.11e3i)11-s + (−2.43e4 + 2.43e4i)13-s − 2.20e4i·15-s − 1.32e4·17-s + (7.29e3 + 7.29e3i)19-s + (5.83e4 + 5.83e4i)21-s − 2.90e5·23-s − 1.68e5i·25-s + (−7.23e4 + 7.23e4i)27-s + (6.52e5 − 6.52e5i)29-s + 3.86e5i·31-s + ⋯ |
| L(s) = 1 | + (0.408 + 0.408i)3-s + (−0.533 − 0.533i)5-s + 0.735·7-s + 0.333i·9-s + (0.349 − 0.349i)11-s + (−0.850 + 0.850i)13-s − 0.435i·15-s − 0.158·17-s + (0.0559 + 0.0559i)19-s + (0.300 + 0.300i)21-s − 1.03·23-s − 0.430i·25-s + (−0.136 + 0.136i)27-s + (0.922 − 0.922i)29-s + 0.418i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.731 - 0.681i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.731 - 0.681i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{9}{2})\) |
\(\approx\) |
\(1.028284287\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.028284287\) |
| \(L(5)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-33.0 - 33.0i)T \) |
| good | 5 | \( 1 + (333. + 333. i)T + 3.90e5iT^{2} \) |
| 7 | \( 1 - 1.76e3T + 5.76e6T^{2} \) |
| 11 | \( 1 + (-5.11e3 + 5.11e3i)T - 2.14e8iT^{2} \) |
| 13 | \( 1 + (2.43e4 - 2.43e4i)T - 8.15e8iT^{2} \) |
| 17 | \( 1 + 1.32e4T + 6.97e9T^{2} \) |
| 19 | \( 1 + (-7.29e3 - 7.29e3i)T + 1.69e10iT^{2} \) |
| 23 | \( 1 + 2.90e5T + 7.83e10T^{2} \) |
| 29 | \( 1 + (-6.52e5 + 6.52e5i)T - 5.00e11iT^{2} \) |
| 31 | \( 1 - 3.86e5iT - 8.52e11T^{2} \) |
| 37 | \( 1 + (-1.62e6 - 1.62e6i)T + 3.51e12iT^{2} \) |
| 41 | \( 1 - 1.15e6iT - 7.98e12T^{2} \) |
| 43 | \( 1 + (2.25e6 - 2.25e6i)T - 1.16e13iT^{2} \) |
| 47 | \( 1 - 3.16e6iT - 2.38e13T^{2} \) |
| 53 | \( 1 + (-8.51e6 - 8.51e6i)T + 6.22e13iT^{2} \) |
| 59 | \( 1 + (-1.02e6 + 1.02e6i)T - 1.46e14iT^{2} \) |
| 61 | \( 1 + (1.85e7 - 1.85e7i)T - 1.91e14iT^{2} \) |
| 67 | \( 1 + (1.09e7 + 1.09e7i)T + 4.06e14iT^{2} \) |
| 71 | \( 1 + 2.07e7T + 6.45e14T^{2} \) |
| 73 | \( 1 + 1.49e7iT - 8.06e14T^{2} \) |
| 79 | \( 1 - 1.87e7iT - 1.51e15T^{2} \) |
| 83 | \( 1 + (4.60e7 + 4.60e7i)T + 2.25e15iT^{2} \) |
| 89 | \( 1 - 1.96e7iT - 3.93e15T^{2} \) |
| 97 | \( 1 - 4.61e7T + 7.83e15T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.65418575526873251447983483434, −10.36809216551095476822565430243, −9.365194972467930235230381022302, −8.398054708107413552529428446432, −7.69051897639814994402053612380, −6.25940065470856125569906437951, −4.72123209207537185323155198611, −4.20924928047326900770564255811, −2.65060942467798169275375121184, −1.30812686015220987917868910312,
0.22265800864426719544556746530, 1.71133155906358705737409687127, 2.87582639279150601302754530139, 4.10149696727935520802503197377, 5.38341328601206274839176336860, 6.84402390210527829139128205099, 7.63689919248944764213380143766, 8.437498416640392560193040312771, 9.711208146560947494488568278593, 10.73976112741326032163866137871