Properties

Label 2-192-16.11-c8-0-5
Degree $2$
Conductor $192$
Sign $-0.827 - 0.561i$
Analytic cond. $78.2166$
Root an. cond. $8.84402$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (33.0 + 33.0i)3-s + (−341. − 341. i)5-s − 1.35e3·7-s + 2.18e3i·9-s + (−7.12e3 + 7.12e3i)11-s + (2.39e4 − 2.39e4i)13-s − 2.25e4i·15-s + 1.42e5·17-s + (1.68e4 + 1.68e4i)19-s + (−4.46e4 − 4.46e4i)21-s − 2.84e5·23-s − 1.57e5i·25-s + (−7.23e4 + 7.23e4i)27-s + (−4.12e4 + 4.12e4i)29-s − 4.92e5i·31-s + ⋯
L(s)  = 1  + (0.408 + 0.408i)3-s + (−0.546 − 0.546i)5-s − 0.562·7-s + 0.333i·9-s + (−0.486 + 0.486i)11-s + (0.837 − 0.837i)13-s − 0.446i·15-s + 1.70·17-s + (0.129 + 0.129i)19-s + (−0.229 − 0.229i)21-s − 1.01·23-s − 0.402i·25-s + (−0.136 + 0.136i)27-s + (−0.0583 + 0.0583i)29-s − 0.532i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.827 - 0.561i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.827 - 0.561i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(192\)    =    \(2^{6} \cdot 3\)
Sign: $-0.827 - 0.561i$
Analytic conductor: \(78.2166\)
Root analytic conductor: \(8.84402\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{192} (79, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 192,\ (\ :4),\ -0.827 - 0.561i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.6355753995\)
\(L(\frac12)\) \(\approx\) \(0.6355753995\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-33.0 - 33.0i)T \)
good5 \( 1 + (341. + 341. i)T + 3.90e5iT^{2} \)
7 \( 1 + 1.35e3T + 5.76e6T^{2} \)
11 \( 1 + (7.12e3 - 7.12e3i)T - 2.14e8iT^{2} \)
13 \( 1 + (-2.39e4 + 2.39e4i)T - 8.15e8iT^{2} \)
17 \( 1 - 1.42e5T + 6.97e9T^{2} \)
19 \( 1 + (-1.68e4 - 1.68e4i)T + 1.69e10iT^{2} \)
23 \( 1 + 2.84e5T + 7.83e10T^{2} \)
29 \( 1 + (4.12e4 - 4.12e4i)T - 5.00e11iT^{2} \)
31 \( 1 + 4.92e5iT - 8.52e11T^{2} \)
37 \( 1 + (-1.44e5 - 1.44e5i)T + 3.51e12iT^{2} \)
41 \( 1 - 3.50e6iT - 7.98e12T^{2} \)
43 \( 1 + (4.26e6 - 4.26e6i)T - 1.16e13iT^{2} \)
47 \( 1 - 2.41e6iT - 2.38e13T^{2} \)
53 \( 1 + (7.04e6 + 7.04e6i)T + 6.22e13iT^{2} \)
59 \( 1 + (-4.76e6 + 4.76e6i)T - 1.46e14iT^{2} \)
61 \( 1 + (1.12e7 - 1.12e7i)T - 1.91e14iT^{2} \)
67 \( 1 + (-1.80e7 - 1.80e7i)T + 4.06e14iT^{2} \)
71 \( 1 + 5.35e6T + 6.45e14T^{2} \)
73 \( 1 + 5.24e6iT - 8.06e14T^{2} \)
79 \( 1 - 1.76e7iT - 1.51e15T^{2} \)
83 \( 1 + (2.65e7 + 2.65e7i)T + 2.25e15iT^{2} \)
89 \( 1 - 5.13e7iT - 3.93e15T^{2} \)
97 \( 1 + 1.36e8T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.49478205828271910365424137624, −10.18565802934637335886078629871, −9.670901387044422467568663054709, −8.206074207212770507051092340001, −7.85448213546958442471344931226, −6.18843289902980372707211495335, −5.05764477816170434535018434683, −3.84349482271841774389299571680, −2.93155438466535255312642284595, −1.21546899545321111088882879246, 0.14677665735248901061630841373, 1.59624196471688017886032098758, 3.11172739572510215766815527203, 3.76705782803500813765913080264, 5.57028810294473059417485329278, 6.65912720265802935325543536267, 7.61385561180475804118096903561, 8.504536558797599113722438065576, 9.655322198250930225826060612853, 10.68248574739034744396674363398

Graph of the $Z$-function along the critical line