| L(s) = 1 | + (−33.0 − 33.0i)3-s + (625. + 625. i)5-s − 873.·7-s + 2.18e3i·9-s + (7.49e3 − 7.49e3i)11-s + (−1.76e4 + 1.76e4i)13-s − 4.14e4i·15-s + 1.20e5·17-s + (2.06e4 + 2.06e4i)19-s + (2.88e4 + 2.88e4i)21-s + 4.99e3·23-s + 3.93e5i·25-s + (7.23e4 − 7.23e4i)27-s + (5.91e5 − 5.91e5i)29-s + 4.99e5i·31-s + ⋯ |
| L(s) = 1 | + (−0.408 − 0.408i)3-s + (1.00 + 1.00i)5-s − 0.363·7-s + 0.333i·9-s + (0.511 − 0.511i)11-s + (−0.616 + 0.616i)13-s − 0.817i·15-s + 1.43·17-s + (0.158 + 0.158i)19-s + (0.148 + 0.148i)21-s + 0.0178·23-s + 1.00i·25-s + (0.136 − 0.136i)27-s + (0.836 − 0.836i)29-s + 0.540i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.417 - 0.908i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.417 - 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{9}{2})\) |
\(\approx\) |
\(2.062031039\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.062031039\) |
| \(L(5)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (33.0 + 33.0i)T \) |
| good | 5 | \( 1 + (-625. - 625. i)T + 3.90e5iT^{2} \) |
| 7 | \( 1 + 873.T + 5.76e6T^{2} \) |
| 11 | \( 1 + (-7.49e3 + 7.49e3i)T - 2.14e8iT^{2} \) |
| 13 | \( 1 + (1.76e4 - 1.76e4i)T - 8.15e8iT^{2} \) |
| 17 | \( 1 - 1.20e5T + 6.97e9T^{2} \) |
| 19 | \( 1 + (-2.06e4 - 2.06e4i)T + 1.69e10iT^{2} \) |
| 23 | \( 1 - 4.99e3T + 7.83e10T^{2} \) |
| 29 | \( 1 + (-5.91e5 + 5.91e5i)T - 5.00e11iT^{2} \) |
| 31 | \( 1 - 4.99e5iT - 8.52e11T^{2} \) |
| 37 | \( 1 + (5.48e5 + 5.48e5i)T + 3.51e12iT^{2} \) |
| 41 | \( 1 - 2.47e6iT - 7.98e12T^{2} \) |
| 43 | \( 1 + (1.86e6 - 1.86e6i)T - 1.16e13iT^{2} \) |
| 47 | \( 1 + 3.07e6iT - 2.38e13T^{2} \) |
| 53 | \( 1 + (8.63e6 + 8.63e6i)T + 6.22e13iT^{2} \) |
| 59 | \( 1 + (4.64e6 - 4.64e6i)T - 1.46e14iT^{2} \) |
| 61 | \( 1 + (-1.74e4 + 1.74e4i)T - 1.91e14iT^{2} \) |
| 67 | \( 1 + (-2.63e7 - 2.63e7i)T + 4.06e14iT^{2} \) |
| 71 | \( 1 - 4.89e7T + 6.45e14T^{2} \) |
| 73 | \( 1 - 5.31e7iT - 8.06e14T^{2} \) |
| 79 | \( 1 - 6.50e6iT - 1.51e15T^{2} \) |
| 83 | \( 1 + (-5.61e7 - 5.61e7i)T + 2.25e15iT^{2} \) |
| 89 | \( 1 + 8.95e7iT - 3.93e15T^{2} \) |
| 97 | \( 1 - 1.32e8T + 7.83e15T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27710262971811470012558529231, −10.11872767366518843914241845637, −9.614501032788659198204906155416, −8.080260032787372683301437563345, −6.81679879296629897039528024953, −6.27245361709287078417764122603, −5.19589222495476046740099423693, −3.43934581157863474500165977602, −2.32245659890195068177484978564, −1.08167646778173446180715594813,
0.56854734654176399656303539426, 1.67313319257612581517229240575, 3.26367615575215928107245025994, 4.78523014619701558238222154377, 5.45664213578114973517350113441, 6.52398738250600922090579350389, 7.919286746072124665193033654947, 9.274295095119732636546537079071, 9.731301346256223731201446621736, 10.65266111530635187113369980576