L(s) = 1 | + (3.46 − 3.87i)3-s − 8.94i·5-s − 7.74i·7-s + (−3.00 − 26.8i)9-s − 34.6·11-s + 10·13-s + (−34.6 − 30.9i)15-s + 35.7i·17-s − 69.7i·19-s + (−30.0 − 26.8i)21-s − 96.9·23-s + 44.9·25-s + (−114. − 81.3i)27-s + 152. i·29-s − 224. i·31-s + ⋯ |
L(s) = 1 | + (0.666 − 0.745i)3-s − 0.799i·5-s − 0.418i·7-s + (−0.111 − 0.993i)9-s − 0.949·11-s + 0.213·13-s + (−0.596 − 0.533i)15-s + 0.510i·17-s − 0.841i·19-s + (−0.311 − 0.278i)21-s − 0.879·23-s + 0.359·25-s + (−0.814 − 0.579i)27-s + 0.973i·29-s − 1.30i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.666 + 0.745i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.666 + 0.745i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.707576 - 1.58218i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.707576 - 1.58218i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-3.46 + 3.87i)T \) |
good | 5 | \( 1 + 8.94iT - 125T^{2} \) |
| 7 | \( 1 + 7.74iT - 343T^{2} \) |
| 11 | \( 1 + 34.6T + 1.33e3T^{2} \) |
| 13 | \( 1 - 10T + 2.19e3T^{2} \) |
| 17 | \( 1 - 35.7iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 69.7iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 96.9T + 1.21e4T^{2} \) |
| 29 | \( 1 - 152. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 224. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 130T + 5.06e4T^{2} \) |
| 41 | \( 1 + 125. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 224. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 193.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 545. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 173.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 442T + 2.26e5T^{2} \) |
| 67 | \( 1 - 735. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 1.03e3T + 3.57e5T^{2} \) |
| 73 | \( 1 - 410T + 3.89e5T^{2} \) |
| 79 | \( 1 - 85.2iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 1.25e3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 840. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 770T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.97352220073801066930436332015, −10.74121061350178507540548305547, −9.532521520739510069986357155773, −8.528029062007044203068344692902, −7.79351034233387576704676272556, −6.66450691492483079038077022957, −5.28900633405240212186874735122, −3.83823001705736084187568158772, −2.26707354860444140372591125598, −0.69012137169029699312114267735,
2.36793381327493036202882384909, 3.39222402185979479726926074389, 4.82179479239538230924550816847, 6.08329952447792645773807020609, 7.57014018808288697012341934904, 8.395183939217363798842259757106, 9.608059194473581816010925607919, 10.38446943324474369155789705924, 11.20094408096995853542793918940, 12.45495795642981486611832218136