Properties

Label 2-1911-1.1-c1-0-61
Degree $2$
Conductor $1911$
Sign $1$
Analytic cond. $15.2594$
Root an. cond. $3.90632$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.61·2-s − 3-s + 4.81·4-s + 3.81·5-s − 2.61·6-s + 7.34·8-s + 9-s + 9.95·10-s − 4.73·11-s − 4.81·12-s − 13-s − 3.81·15-s + 9.55·16-s + 5.22·17-s + 2.61·18-s − 2.92·19-s + 18.3·20-s − 12.3·22-s + 3.33·23-s − 7.34·24-s + 9.55·25-s − 2.61·26-s − 27-s − 0.922·29-s − 9.95·30-s + 7.51·31-s + 10.2·32-s + ⋯
L(s)  = 1  + 1.84·2-s − 0.577·3-s + 2.40·4-s + 1.70·5-s − 1.06·6-s + 2.59·8-s + 0.333·9-s + 3.14·10-s − 1.42·11-s − 1.38·12-s − 0.277·13-s − 0.984·15-s + 2.38·16-s + 1.26·17-s + 0.615·18-s − 0.670·19-s + 4.10·20-s − 2.63·22-s + 0.694·23-s − 1.49·24-s + 1.91·25-s − 0.511·26-s − 0.192·27-s − 0.171·29-s − 1.81·30-s + 1.35·31-s + 1.81·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1911 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1911 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1911\)    =    \(3 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(15.2594\)
Root analytic conductor: \(3.90632\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1911,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.950450659\)
\(L(\frac12)\) \(\approx\) \(5.950450659\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 \)
13 \( 1 + T \)
good2 \( 1 - 2.61T + 2T^{2} \)
5 \( 1 - 3.81T + 5T^{2} \)
11 \( 1 + 4.73T + 11T^{2} \)
17 \( 1 - 5.22T + 17T^{2} \)
19 \( 1 + 2.92T + 19T^{2} \)
23 \( 1 - 3.33T + 23T^{2} \)
29 \( 1 + 0.922T + 29T^{2} \)
31 \( 1 - 7.51T + 31T^{2} \)
37 \( 1 - 0.154T + 37T^{2} \)
41 \( 1 + 6.36T + 41T^{2} \)
43 \( 1 + 6.55T + 43T^{2} \)
47 \( 1 + 9.03T + 47T^{2} \)
53 \( 1 - 8.55T + 53T^{2} \)
59 \( 1 + 3.95T + 59T^{2} \)
61 \( 1 + 12.4T + 61T^{2} \)
67 \( 1 + 10.6T + 67T^{2} \)
71 \( 1 + 6.58T + 71T^{2} \)
73 \( 1 - 7.73T + 73T^{2} \)
79 \( 1 - 13.3T + 79T^{2} \)
83 \( 1 - 1.40T + 83T^{2} \)
89 \( 1 - 1.96T + 89T^{2} \)
97 \( 1 - 2.11T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.572092235490181032075627935793, −8.161111632574951171463277947516, −7.15843899322385305235108967649, −6.34868069096053002103989244422, −5.83559009690674376137725567846, −5.08642110563666370220060422999, −4.79564159119713193983318154562, −3.25830501722698521304745116018, −2.53705785222885507365364174128, −1.57733661967134253562589763215, 1.57733661967134253562589763215, 2.53705785222885507365364174128, 3.25830501722698521304745116018, 4.79564159119713193983318154562, 5.08642110563666370220060422999, 5.83559009690674376137725567846, 6.34868069096053002103989244422, 7.15843899322385305235108967649, 8.161111632574951171463277947516, 9.572092235490181032075627935793

Graph of the $Z$-function along the critical line