Properties

Label 2-1911-1.1-c1-0-18
Degree $2$
Conductor $1911$
Sign $1$
Analytic cond. $15.2594$
Root an. cond. $3.90632$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.37·2-s − 3-s + 3.66·4-s + 2.66·5-s + 2.37·6-s − 3.95·8-s + 9-s − 6.33·10-s + 1.57·11-s − 3.66·12-s − 13-s − 2.66·15-s + 2.08·16-s − 4.75·17-s − 2.37·18-s + 2.23·19-s + 9.74·20-s − 3.74·22-s + 5.84·23-s + 3.95·24-s + 2.08·25-s + 2.37·26-s − 27-s + 4.23·29-s + 6.33·30-s − 7.28·31-s + 2.94·32-s + ⋯
L(s)  = 1  − 1.68·2-s − 0.577·3-s + 1.83·4-s + 1.19·5-s + 0.971·6-s − 1.39·8-s + 0.333·9-s − 2.00·10-s + 0.475·11-s − 1.05·12-s − 0.277·13-s − 0.687·15-s + 0.521·16-s − 1.15·17-s − 0.560·18-s + 0.513·19-s + 2.17·20-s − 0.799·22-s + 1.21·23-s + 0.807·24-s + 0.417·25-s + 0.466·26-s − 0.192·27-s + 0.786·29-s + 1.15·30-s − 1.30·31-s + 0.520·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1911 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1911 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1911\)    =    \(3 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(15.2594\)
Root analytic conductor: \(3.90632\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1911,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7927994525\)
\(L(\frac12)\) \(\approx\) \(0.7927994525\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 \)
13 \( 1 + T \)
good2 \( 1 + 2.37T + 2T^{2} \)
5 \( 1 - 2.66T + 5T^{2} \)
11 \( 1 - 1.57T + 11T^{2} \)
17 \( 1 + 4.75T + 17T^{2} \)
19 \( 1 - 2.23T + 19T^{2} \)
23 \( 1 - 5.84T + 23T^{2} \)
29 \( 1 - 4.23T + 29T^{2} \)
31 \( 1 + 7.28T + 31T^{2} \)
37 \( 1 - 10.4T + 37T^{2} \)
41 \( 1 - 2.25T + 41T^{2} \)
43 \( 1 - 0.913T + 43T^{2} \)
47 \( 1 - 2.09T + 47T^{2} \)
53 \( 1 - 1.08T + 53T^{2} \)
59 \( 1 - 12.3T + 59T^{2} \)
61 \( 1 - 7.51T + 61T^{2} \)
67 \( 1 + 15.6T + 67T^{2} \)
71 \( 1 - 10.0T + 71T^{2} \)
73 \( 1 + 15.0T + 73T^{2} \)
79 \( 1 + 11.7T + 79T^{2} \)
83 \( 1 + 7.42T + 83T^{2} \)
89 \( 1 - 11.1T + 89T^{2} \)
97 \( 1 - 14.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.101073886736179940742110333221, −8.882945012024849835059485324276, −7.63378392144630465842152016470, −6.95574854043787145357866744193, −6.30901291294132636685115970855, −5.50077887191834548338236696429, −4.41033295839229128740034148081, −2.71992528217226897427403486343, −1.82594833322199503062431996154, −0.816516820932596110321388874134, 0.816516820932596110321388874134, 1.82594833322199503062431996154, 2.71992528217226897427403486343, 4.41033295839229128740034148081, 5.50077887191834548338236696429, 6.30901291294132636685115970855, 6.95574854043787145357866744193, 7.63378392144630465842152016470, 8.882945012024849835059485324276, 9.101073886736179940742110333221

Graph of the $Z$-function along the critical line