Properties

Label 2-1904-1.1-c1-0-26
Degree $2$
Conductor $1904$
Sign $-1$
Analytic cond. $15.2035$
Root an. cond. $3.89916$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.93·3-s + 1.25·5-s − 7-s + 5.61·9-s − 2.50·11-s − 3.68·15-s − 17-s + 3.87·19-s + 2.93·21-s + 4.37·23-s − 3.42·25-s − 7.68·27-s − 7.87·29-s − 1.25·31-s + 7.36·33-s − 1.25·35-s + 3.87·37-s + 9.28·41-s + 1.41·43-s + 7.04·45-s + 7.74·47-s + 49-s + 2.93·51-s + 1.38·53-s − 3.14·55-s − 11.3·57-s − 8.34·59-s + ⋯
L(s)  = 1  − 1.69·3-s + 0.560·5-s − 0.377·7-s + 1.87·9-s − 0.756·11-s − 0.950·15-s − 0.242·17-s + 0.888·19-s + 0.640·21-s + 0.913·23-s − 0.685·25-s − 1.47·27-s − 1.46·29-s − 0.225·31-s + 1.28·33-s − 0.211·35-s + 0.636·37-s + 1.44·41-s + 0.215·43-s + 1.05·45-s + 1.12·47-s + 0.142·49-s + 0.411·51-s + 0.190·53-s − 0.424·55-s − 1.50·57-s − 1.08·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1904 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1904 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1904\)    =    \(2^{4} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(15.2035\)
Root analytic conductor: \(3.89916\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1904,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good3 \( 1 + 2.93T + 3T^{2} \)
5 \( 1 - 1.25T + 5T^{2} \)
11 \( 1 + 2.50T + 11T^{2} \)
13 \( 1 + 13T^{2} \)
19 \( 1 - 3.87T + 19T^{2} \)
23 \( 1 - 4.37T + 23T^{2} \)
29 \( 1 + 7.87T + 29T^{2} \)
31 \( 1 + 1.25T + 31T^{2} \)
37 \( 1 - 3.87T + 37T^{2} \)
41 \( 1 - 9.28T + 41T^{2} \)
43 \( 1 - 1.41T + 43T^{2} \)
47 \( 1 - 7.74T + 47T^{2} \)
53 \( 1 - 1.38T + 53T^{2} \)
59 \( 1 + 8.34T + 59T^{2} \)
61 \( 1 + 11.6T + 61T^{2} \)
67 \( 1 + 10.9T + 67T^{2} \)
71 \( 1 + 0.475T + 71T^{2} \)
73 \( 1 - 0.427T + 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 - 1.83T + 83T^{2} \)
89 \( 1 + 2.37T + 89T^{2} \)
97 \( 1 + 1.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.198250864702968111145899069810, −7.67612604488545837635398672755, −7.17938206566582065798415108528, −6.10351554236201601384242826197, −5.72990585160382804511369732012, −5.02525681740044008423686220107, −4.07305135997770552617002934518, −2.70552934607491041694729981692, −1.32108607976346260126523355971, 0, 1.32108607976346260126523355971, 2.70552934607491041694729981692, 4.07305135997770552617002934518, 5.02525681740044008423686220107, 5.72990585160382804511369732012, 6.10351554236201601384242826197, 7.17938206566582065798415108528, 7.67612604488545837635398672755, 9.198250864702968111145899069810

Graph of the $Z$-function along the critical line