Properties

Label 2-1904-1.1-c1-0-15
Degree $2$
Conductor $1904$
Sign $1$
Analytic cond. $15.2035$
Root an. cond. $3.89916$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4·5-s − 7-s + 9-s + 4·11-s − 4·13-s − 8·15-s − 17-s + 6·19-s + 2·21-s + 11·25-s + 4·27-s + 6·29-s − 4·31-s − 8·33-s − 4·35-s − 10·37-s + 8·39-s + 6·41-s + 4·45-s − 4·47-s + 49-s + 2·51-s + 14·53-s + 16·55-s − 12·57-s + 6·59-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.78·5-s − 0.377·7-s + 1/3·9-s + 1.20·11-s − 1.10·13-s − 2.06·15-s − 0.242·17-s + 1.37·19-s + 0.436·21-s + 11/5·25-s + 0.769·27-s + 1.11·29-s − 0.718·31-s − 1.39·33-s − 0.676·35-s − 1.64·37-s + 1.28·39-s + 0.937·41-s + 0.596·45-s − 0.583·47-s + 1/7·49-s + 0.280·51-s + 1.92·53-s + 2.15·55-s − 1.58·57-s + 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1904 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1904 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1904\)    =    \(2^{4} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(15.2035\)
Root analytic conductor: \(3.89916\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1904,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.601016422\)
\(L(\frac12)\) \(\approx\) \(1.601016422\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 - 4 T + p T^{2} \) 1.5.ae
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.353877214568608158975685691235, −8.792320134679942386987328204107, −7.20538145889120705419675013150, −6.67715777173991787561748890315, −5.93683910837363468486972715767, −5.38202673164662018917332684771, −4.66926669335912418503034638447, −3.18709894584368791480262864867, −2.06847900519095682932735371240, −0.936906498625533428667018109497, 0.936906498625533428667018109497, 2.06847900519095682932735371240, 3.18709894584368791480262864867, 4.66926669335912418503034638447, 5.38202673164662018917332684771, 5.93683910837363468486972715767, 6.67715777173991787561748890315, 7.20538145889120705419675013150, 8.792320134679942386987328204107, 9.353877214568608158975685691235

Graph of the $Z$-function along the critical line