Properties

Label 2-1900-95.37-c1-0-9
Degree $2$
Conductor $1900$
Sign $-0.554 - 0.832i$
Analytic cond. $15.1715$
Root an. cond. $3.89507$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.25 + 2.25i)3-s + (1.48 + 1.48i)7-s + 7.15i·9-s + 0.806·11-s + (−0.437 − 0.437i)13-s + (−3.15 − 3.15i)17-s + (−1.81 + 3.96i)19-s + 6.67i·21-s + (−1.86 + 1.86i)23-s + (−9.36 + 9.36i)27-s + 4.50·29-s + 6.67i·31-s + (1.81 + 1.81i)33-s + (5.29 − 5.29i)37-s − 1.96i·39-s + ⋯
L(s)  = 1  + (1.30 + 1.30i)3-s + (0.559 + 0.559i)7-s + 2.38i·9-s + 0.243·11-s + (−0.121 − 0.121i)13-s + (−0.765 − 0.765i)17-s + (−0.416 + 0.909i)19-s + 1.45i·21-s + (−0.389 + 0.389i)23-s + (−1.80 + 1.80i)27-s + 0.836·29-s + 1.19i·31-s + (0.316 + 0.316i)33-s + (0.870 − 0.870i)37-s − 0.315i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.554 - 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.554 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1900\)    =    \(2^{2} \cdot 5^{2} \cdot 19\)
Sign: $-0.554 - 0.832i$
Analytic conductor: \(15.1715\)
Root analytic conductor: \(3.89507\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1900} (1557, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1900,\ (\ :1/2),\ -0.554 - 0.832i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.746718618\)
\(L(\frac12)\) \(\approx\) \(2.746718618\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + (1.81 - 3.96i)T \)
good3 \( 1 + (-2.25 - 2.25i)T + 3iT^{2} \)
7 \( 1 + (-1.48 - 1.48i)T + 7iT^{2} \)
11 \( 1 - 0.806T + 11T^{2} \)
13 \( 1 + (0.437 + 0.437i)T + 13iT^{2} \)
17 \( 1 + (3.15 + 3.15i)T + 17iT^{2} \)
23 \( 1 + (1.86 - 1.86i)T - 23iT^{2} \)
29 \( 1 - 4.50T + 29T^{2} \)
31 \( 1 - 6.67iT - 31T^{2} \)
37 \( 1 + (-5.29 + 5.29i)T - 37iT^{2} \)
41 \( 1 - 11.1iT - 41T^{2} \)
43 \( 1 + (-3.86 + 3.86i)T - 43iT^{2} \)
47 \( 1 + (6.83 + 6.83i)T + 47iT^{2} \)
53 \( 1 + (-8.92 - 8.92i)T + 53iT^{2} \)
59 \( 1 + 12.9T + 59T^{2} \)
61 \( 1 + 2.15T + 61T^{2} \)
67 \( 1 + (-4.94 + 4.94i)T - 67iT^{2} \)
71 \( 1 + 3.04iT - 71T^{2} \)
73 \( 1 + (-6.19 + 6.19i)T - 73iT^{2} \)
79 \( 1 - 1.46T + 79T^{2} \)
83 \( 1 + (5.32 - 5.32i)T - 83iT^{2} \)
89 \( 1 - 14.2T + 89T^{2} \)
97 \( 1 + (-7.46 + 7.46i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.346662691463728347564552569005, −8.796165804222218383795697075403, −8.183131385499609371944176695426, −7.47685609964719369025545615001, −6.20922933560992424080160474851, −5.08297863434891827136342865309, −4.53939084511276670732124394311, −3.63446730071075183097917209916, −2.75674818325843326679430523100, −1.88769515930737701205905740074, 0.841961934614638315574179660472, 1.96105696225305635015702470470, 2.66042632193977265496396930178, 3.84703608253829208115208220293, 4.59570532983983841745120693290, 6.19383951005395139284095093118, 6.68608166673907823820427916318, 7.55604897576137543973656363264, 8.077551570603514105172152781516, 8.764657470639789883287211833035

Graph of the $Z$-function along the critical line