Properties

Label 2-1900-5.4-c1-0-25
Degree $2$
Conductor $1900$
Sign $-0.447 - 0.894i$
Analytic cond. $15.1715$
Root an. cond. $3.89507$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.41i·3-s − 0.828i·7-s − 8.65·9-s − 2·11-s − 6.24i·13-s − 0.828i·17-s + 19-s − 2.82·21-s − 6i·23-s + 19.3i·27-s + 6.48·29-s − 6.82·31-s + 6.82i·33-s + 1.75i·37-s − 21.3·39-s + ⋯
L(s)  = 1  − 1.97i·3-s − 0.313i·7-s − 2.88·9-s − 0.603·11-s − 1.73i·13-s − 0.200i·17-s + 0.229·19-s − 0.617·21-s − 1.25i·23-s + 3.71i·27-s + 1.20·29-s − 1.22·31-s + 1.18i·33-s + 0.288i·37-s − 3.41·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1900\)    =    \(2^{2} \cdot 5^{2} \cdot 19\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(15.1715\)
Root analytic conductor: \(3.89507\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1900} (1749, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1900,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8589734317\)
\(L(\frac12)\) \(\approx\) \(0.8589734317\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + 3.41iT - 3T^{2} \)
7 \( 1 + 0.828iT - 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 + 6.24iT - 13T^{2} \)
17 \( 1 + 0.828iT - 17T^{2} \)
23 \( 1 + 6iT - 23T^{2} \)
29 \( 1 - 6.48T + 29T^{2} \)
31 \( 1 + 6.82T + 31T^{2} \)
37 \( 1 - 1.75iT - 37T^{2} \)
41 \( 1 - 3.65T + 41T^{2} \)
43 \( 1 - 4.82iT - 43T^{2} \)
47 \( 1 - 4.82iT - 47T^{2} \)
53 \( 1 - 9.07iT - 53T^{2} \)
59 \( 1 + 13.6T + 59T^{2} \)
61 \( 1 + 13.6T + 61T^{2} \)
67 \( 1 - 3.41iT - 67T^{2} \)
71 \( 1 - 5.17T + 71T^{2} \)
73 \( 1 + 2.48iT - 73T^{2} \)
79 \( 1 + 1.65T + 79T^{2} \)
83 \( 1 + 13.3iT - 83T^{2} \)
89 \( 1 - 6.48T + 89T^{2} \)
97 \( 1 - 10.2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.337558176029440218748459778649, −7.73684991762181895402985938035, −7.34050816341826362903023592435, −6.30083966969604342660653094607, −5.80011625532092285750856883137, −4.82235230169950396525764833131, −3.08389291244899957566431123968, −2.60593289889015598548523966471, −1.26901289972120952857082027657, −0.32077540743513859221672103138, 2.15920137626435536748547054814, 3.29583035949237515835783238268, 4.02068940598534697596547161893, 4.81851264190098231838596317870, 5.47138925203447059176193359816, 6.31122210658978051780581285669, 7.51892635823834459125244391982, 8.581447609941493714769059520429, 9.150788408829538254508129693501, 9.625371532495666727369105405252

Graph of the $Z$-function along the critical line