Properties

Label 2-1900-1.1-c1-0-28
Degree $2$
Conductor $1900$
Sign $-1$
Analytic cond. $15.1715$
Root an. cond. $3.89507$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.28·3-s − 2.82·7-s + 2.23·9-s − 5.23·11-s − 4.03·13-s + 1.08·17-s − 19-s − 6.47·21-s + 7.40·23-s − 1.74·27-s + 4.47·29-s − 4·31-s − 11.9·33-s − 6.86·37-s − 9.23·39-s − 6·41-s − 8.48·43-s − 8.48·47-s + 1.00·49-s + 2.47·51-s + 6.86·53-s − 2.28·57-s − 10.4·59-s + 1.70·61-s − 6.32·63-s − 1.62·67-s + 16.9·69-s + ⋯
L(s)  = 1  + 1.32·3-s − 1.06·7-s + 0.745·9-s − 1.57·11-s − 1.11·13-s + 0.262·17-s − 0.229·19-s − 1.41·21-s + 1.54·23-s − 0.336·27-s + 0.830·29-s − 0.718·31-s − 2.08·33-s − 1.12·37-s − 1.47·39-s − 0.937·41-s − 1.29·43-s − 1.23·47-s + 0.142·49-s + 0.346·51-s + 0.942·53-s − 0.303·57-s − 1.36·59-s + 0.218·61-s − 0.796·63-s − 0.197·67-s + 2.03·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1900\)    =    \(2^{2} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(15.1715\)
Root analytic conductor: \(3.89507\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1900} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1900,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - 2.28T + 3T^{2} \)
7 \( 1 + 2.82T + 7T^{2} \)
11 \( 1 + 5.23T + 11T^{2} \)
13 \( 1 + 4.03T + 13T^{2} \)
17 \( 1 - 1.08T + 17T^{2} \)
23 \( 1 - 7.40T + 23T^{2} \)
29 \( 1 - 4.47T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 + 6.86T + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 8.48T + 43T^{2} \)
47 \( 1 + 8.48T + 47T^{2} \)
53 \( 1 - 6.86T + 53T^{2} \)
59 \( 1 + 10.4T + 59T^{2} \)
61 \( 1 - 1.70T + 61T^{2} \)
67 \( 1 + 1.62T + 67T^{2} \)
71 \( 1 + 1.52T + 71T^{2} \)
73 \( 1 - 13.7T + 73T^{2} \)
79 \( 1 + 11.4T + 79T^{2} \)
83 \( 1 - 5.24T + 83T^{2} \)
89 \( 1 + 14.9T + 89T^{2} \)
97 \( 1 + 4.44T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.748580371067580704639475289959, −8.161011005377315314707426919718, −7.31899002408850242427015791774, −6.75373938335604072244306500622, −5.44673960962651922960646582450, −4.74208212326978026722927022325, −3.26110465758025879119597275130, −3.03408814518767089601946980012, −2.03770108810668503165609429346, 0, 2.03770108810668503165609429346, 3.03408814518767089601946980012, 3.26110465758025879119597275130, 4.74208212326978026722927022325, 5.44673960962651922960646582450, 6.75373938335604072244306500622, 7.31899002408850242427015791774, 8.161011005377315314707426919718, 8.748580371067580704639475289959

Graph of the $Z$-function along the critical line