Properties

Label 2-190-1.1-c1-0-4
Degree $2$
Conductor $190$
Sign $-1$
Analytic cond. $1.51715$
Root an. cond. $1.23172$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·3-s + 4-s − 5-s − 3·6-s − 5·7-s + 8-s + 6·9-s − 10-s − 4·11-s − 3·12-s − 13-s − 5·14-s + 3·15-s + 16-s − 3·17-s + 6·18-s + 19-s − 20-s + 15·21-s − 4·22-s + 7·23-s − 3·24-s + 25-s − 26-s − 9·27-s − 5·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.73·3-s + 1/2·4-s − 0.447·5-s − 1.22·6-s − 1.88·7-s + 0.353·8-s + 2·9-s − 0.316·10-s − 1.20·11-s − 0.866·12-s − 0.277·13-s − 1.33·14-s + 0.774·15-s + 1/4·16-s − 0.727·17-s + 1.41·18-s + 0.229·19-s − 0.223·20-s + 3.27·21-s − 0.852·22-s + 1.45·23-s − 0.612·24-s + 1/5·25-s − 0.196·26-s − 1.73·27-s − 0.944·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(190\)    =    \(2 \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(1.51715\)
Root analytic conductor: \(1.23172\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 190,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
19 \( 1 - T \)
good3 \( 1 + p T + p T^{2} \)
7 \( 1 + 5 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
23 \( 1 - 7 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 13 T + p T^{2} \)
59 \( 1 + 9 T + p T^{2} \)
61 \( 1 + 12 T + p T^{2} \)
67 \( 1 + 3 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 + 2 T + p T^{2} \)
83 \( 1 + 10 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.32630247841887093527540219554, −11.11517582423130592220152114812, −10.53685995532109798031487935325, −9.431192927280394698141787607684, −7.34314124395432920163711504829, −6.59012976667376581440253973920, −5.66768121415484817418669355380, −4.67101925823320154679184379858, −3.15015586052048758770880964700, 0, 3.15015586052048758770880964700, 4.67101925823320154679184379858, 5.66768121415484817418669355380, 6.59012976667376581440253973920, 7.34314124395432920163711504829, 9.431192927280394698141787607684, 10.53685995532109798031487935325, 11.11517582423130592220152114812, 12.32630247841887093527540219554

Graph of the $Z$-function along the critical line