Properties

Label 2-19-1.1-c3-0-1
Degree $2$
Conductor $19$
Sign $1$
Analytic cond. $1.12103$
Root an. cond. $1.05879$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.89·2-s + 2.95·3-s − 4.42·4-s − 1.51·5-s + 5.58·6-s + 5.94·7-s − 23.4·8-s − 18.2·9-s − 2.86·10-s + 11.5·11-s − 13.0·12-s + 22.6·13-s + 11.2·14-s − 4.48·15-s − 9.02·16-s + 120.·17-s − 34.5·18-s − 19·19-s + 6.71·20-s + 17.5·21-s + 21.7·22-s + 63.9·23-s − 69.3·24-s − 122.·25-s + 42.7·26-s − 133.·27-s − 26.2·28-s + ⋯
L(s)  = 1  + 0.668·2-s + 0.568·3-s − 0.553·4-s − 0.135·5-s + 0.380·6-s + 0.320·7-s − 1.03·8-s − 0.676·9-s − 0.0907·10-s + 0.315·11-s − 0.314·12-s + 0.482·13-s + 0.214·14-s − 0.0771·15-s − 0.140·16-s + 1.71·17-s − 0.452·18-s − 0.229·19-s + 0.0750·20-s + 0.182·21-s + 0.211·22-s + 0.579·23-s − 0.590·24-s − 0.981·25-s + 0.322·26-s − 0.953·27-s − 0.177·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19\)
Sign: $1$
Analytic conductor: \(1.12103\)
Root analytic conductor: \(1.05879\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.395025057\)
\(L(\frac12)\) \(\approx\) \(1.395025057\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad19 \( 1 + 19T \)
good2 \( 1 - 1.89T + 8T^{2} \)
3 \( 1 - 2.95T + 27T^{2} \)
5 \( 1 + 1.51T + 125T^{2} \)
7 \( 1 - 5.94T + 343T^{2} \)
11 \( 1 - 11.5T + 1.33e3T^{2} \)
13 \( 1 - 22.6T + 2.19e3T^{2} \)
17 \( 1 - 120.T + 4.91e3T^{2} \)
23 \( 1 - 63.9T + 1.21e4T^{2} \)
29 \( 1 + 89.7T + 2.43e4T^{2} \)
31 \( 1 + 251.T + 2.97e4T^{2} \)
37 \( 1 - 198.T + 5.06e4T^{2} \)
41 \( 1 - 373.T + 6.89e4T^{2} \)
43 \( 1 + 448.T + 7.95e4T^{2} \)
47 \( 1 + 186.T + 1.03e5T^{2} \)
53 \( 1 - 364.T + 1.48e5T^{2} \)
59 \( 1 + 376.T + 2.05e5T^{2} \)
61 \( 1 - 816.T + 2.26e5T^{2} \)
67 \( 1 - 220.T + 3.00e5T^{2} \)
71 \( 1 - 383.T + 3.57e5T^{2} \)
73 \( 1 + 537.T + 3.89e5T^{2} \)
79 \( 1 - 1.06e3T + 4.93e5T^{2} \)
83 \( 1 + 616.T + 5.71e5T^{2} \)
89 \( 1 + 90.2T + 7.04e5T^{2} \)
97 \( 1 + 524.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.13746862586972396123275398115, −16.74143017614854947186662895907, −14.89072574467196254879323755163, −14.24330505534209114655038697667, −12.98894972556472582823645446400, −11.53949360615419159706432468369, −9.438289098868931336409521284559, −8.093737082628268959245413428410, −5.60155656187740077362057676202, −3.58036129084453324196323961651, 3.58036129084453324196323961651, 5.60155656187740077362057676202, 8.093737082628268959245413428410, 9.438289098868931336409521284559, 11.53949360615419159706432468369, 12.98894972556472582823645446400, 14.24330505534209114655038697667, 14.89072574467196254879323755163, 16.74143017614854947186662895907, 18.13746862586972396123275398115

Graph of the $Z$-function along the critical line