L(s) = 1 | + (−8.5 + 14.7i)7-s + (−44.5 − 77.0i)13-s + 107·19-s + (62.5 − 108. i)25-s + (−154 − 266. i)31-s − 433·37-s + (260 − 450. i)43-s + (27 + 46.7i)49-s + (450.5 − 780. i)61-s + (−503.5 − 872. i)67-s − 271·73-s + (−251.5 + 435. i)79-s + 1.51e3·91-s + (−926.5 + 1.60e3i)97-s + (9.5 + 16.4i)103-s + ⋯ |
L(s) = 1 | + (−0.458 + 0.794i)7-s + (−0.949 − 1.64i)13-s + 1.29·19-s + (0.5 − 0.866i)25-s + (−0.892 − 1.54i)31-s − 1.92·37-s + (0.922 − 1.59i)43-s + (0.0787 + 0.136i)49-s + (0.945 − 1.63i)61-s + (−0.918 − 1.59i)67-s − 0.434·73-s + (−0.358 + 0.620i)79-s + 1.74·91-s + (−0.969 + 1.67i)97-s + (0.00908 + 0.0157i)103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.044747439\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.044747439\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-62.5 + 108. i)T^{2} \) |
| 7 | \( 1 + (8.5 - 14.7i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + (44.5 + 77.0i)T + (-1.09e3 + 1.90e3i)T^{2} \) |
| 17 | \( 1 + 4.91e3T^{2} \) |
| 19 | \( 1 - 107T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + (154 + 266. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + 433T + 5.06e4T^{2} \) |
| 41 | \( 1 + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-260 + 450. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + 1.48e5T^{2} \) |
| 59 | \( 1 + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-450.5 + 780. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (503.5 + 872. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 3.57e5T^{2} \) |
| 73 | \( 1 + 271T + 3.89e5T^{2} \) |
| 79 | \( 1 + (251.5 - 435. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 + 7.04e5T^{2} \) |
| 97 | \( 1 + (926.5 - 1.60e3i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83481079229787325935131551386, −9.955576646757504687975032636207, −9.144392188729630185390396760906, −8.036583517604086068262059213962, −7.15276909921579537655604378267, −5.80002858783243465787826093162, −5.12903352169656611318515130536, −3.44595979829924927111067781997, −2.39704149985424468385239901056, −0.38151929726089190924900171525,
1.45428318178761206728967840321, 3.12972756338506553802889723536, 4.31691669560371039256019514301, 5.42190152205182772722049638806, 7.01958430435382091365329986772, 7.18609054441951655923459920399, 8.812143734218128454249921915932, 9.576388470309955485764095959695, 10.44787895345491171515221873567, 11.49380393827533142355984799335