Properties

Label 2-18e2-324.263-c1-0-30
Degree $2$
Conductor $324$
Sign $0.905 - 0.423i$
Analytic cond. $2.58715$
Root an. cond. $1.60846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.403 + 1.35i)2-s + (−1.52 + 0.819i)3-s + (−1.67 + 1.09i)4-s + (1.81 − 3.60i)5-s + (−1.72 − 1.73i)6-s + (3.06 − 0.917i)7-s + (−2.15 − 1.82i)8-s + (1.65 − 2.50i)9-s + (5.62 + 1.00i)10-s + (0.0562 − 0.966i)11-s + (1.65 − 3.04i)12-s + (1.00 − 1.35i)13-s + (2.47 + 3.78i)14-s + (0.193 + 6.98i)15-s + (1.60 − 3.66i)16-s + (1.25 + 1.49i)17-s + ⋯
L(s)  = 1  + (0.285 + 0.958i)2-s + (−0.880 + 0.473i)3-s + (−0.837 + 0.546i)4-s + (0.810 − 1.61i)5-s + (−0.704 − 0.709i)6-s + (1.15 − 0.346i)7-s + (−0.762 − 0.646i)8-s + (0.551 − 0.834i)9-s + (1.77 + 0.316i)10-s + (0.0169 − 0.291i)11-s + (0.478 − 0.877i)12-s + (0.279 − 0.375i)13-s + (0.662 + 1.01i)14-s + (0.0500 + 1.80i)15-s + (0.402 − 0.915i)16-s + (0.305 + 0.363i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.905 - 0.423i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.905 - 0.423i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(324\)    =    \(2^{2} \cdot 3^{4}\)
Sign: $0.905 - 0.423i$
Analytic conductor: \(2.58715\)
Root analytic conductor: \(1.60846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{324} (263, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 324,\ (\ :1/2),\ 0.905 - 0.423i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.27755 + 0.283810i\)
\(L(\frac12)\) \(\approx\) \(1.27755 + 0.283810i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.403 - 1.35i)T \)
3 \( 1 + (1.52 - 0.819i)T \)
good5 \( 1 + (-1.81 + 3.60i)T + (-2.98 - 4.01i)T^{2} \)
7 \( 1 + (-3.06 + 0.917i)T + (5.84 - 3.84i)T^{2} \)
11 \( 1 + (-0.0562 + 0.966i)T + (-10.9 - 1.27i)T^{2} \)
13 \( 1 + (-1.00 + 1.35i)T + (-3.72 - 12.4i)T^{2} \)
17 \( 1 + (-1.25 - 1.49i)T + (-2.95 + 16.7i)T^{2} \)
19 \( 1 + (4.84 - 5.76i)T + (-3.29 - 18.7i)T^{2} \)
23 \( 1 + (-1.64 + 5.50i)T + (-19.2 - 12.6i)T^{2} \)
29 \( 1 + (-3.97 - 1.71i)T + (19.9 + 21.0i)T^{2} \)
31 \( 1 + (-3.44 + 3.24i)T + (1.80 - 30.9i)T^{2} \)
37 \( 1 + (-1.58 - 8.96i)T + (-34.7 + 12.6i)T^{2} \)
41 \( 1 + (0.0921 - 0.788i)T + (-39.8 - 9.45i)T^{2} \)
43 \( 1 + (-0.0145 + 0.0220i)T + (-17.0 - 39.4i)T^{2} \)
47 \( 1 + (-4.87 + 5.16i)T + (-2.73 - 46.9i)T^{2} \)
53 \( 1 + (3.07 - 1.77i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (0.416 + 7.14i)T + (-58.6 + 6.84i)T^{2} \)
61 \( 1 + (-0.919 - 0.217i)T + (54.5 + 27.3i)T^{2} \)
67 \( 1 + (13.5 - 5.83i)T + (45.9 - 48.7i)T^{2} \)
71 \( 1 + (-3.54 - 1.29i)T + (54.3 + 45.6i)T^{2} \)
73 \( 1 + (-0.192 + 0.0702i)T + (55.9 - 46.9i)T^{2} \)
79 \( 1 + (-1.06 - 9.13i)T + (-76.8 + 18.2i)T^{2} \)
83 \( 1 + (3.99 - 0.466i)T + (80.7 - 19.1i)T^{2} \)
89 \( 1 + (-2.78 - 7.65i)T + (-68.1 + 57.2i)T^{2} \)
97 \( 1 + (15.2 - 7.66i)T + (57.9 - 77.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.00730028770395663846388512879, −10.60290357438988010088847681015, −9.758843644547955102113100427092, −8.523610479245236351131673971611, −8.178693887574064340387709165717, −6.41700836484226193158254588790, −5.66022255832619104296619576067, −4.80784671028272412567300938825, −4.19491067286012872668922855233, −1.12153134774516041210921058527, 1.73678367446200826229437299646, 2.70184006227019188960833745020, 4.51757142311650401755929089395, 5.57167889640394172055509325937, 6.48190291829328171150919843965, 7.52289378181773616634762226256, 9.036167306389223302363122850935, 10.16403956817830330775808514427, 10.96344845696021187866341428780, 11.28636157142485769519918747904

Graph of the $Z$-function along the critical line