Properties

Label 2-18e2-108.103-c2-0-5
Degree $2$
Conductor $324$
Sign $-0.0472 - 0.998i$
Analytic cond. $8.82836$
Root an. cond. $2.97125$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.37 − 1.45i)2-s + (−0.219 + 3.99i)4-s + (3.09 − 1.12i)5-s + (−9.81 + 1.73i)7-s + (6.10 − 5.17i)8-s + (−5.89 − 2.94i)10-s + (0.511 − 1.40i)11-s + (7.50 + 6.29i)13-s + (16.0 + 11.8i)14-s + (−15.9 − 1.75i)16-s + (−2.21 + 3.83i)17-s + (−15.6 + 9.02i)19-s + (3.82 + 12.6i)20-s + (−2.74 + 1.18i)22-s + (−31.4 − 5.54i)23-s + ⋯
L(s)  = 1  + (−0.687 − 0.726i)2-s + (−0.0547 + 0.998i)4-s + (0.619 − 0.225i)5-s + (−1.40 + 0.247i)7-s + (0.762 − 0.646i)8-s + (−0.589 − 0.294i)10-s + (0.0464 − 0.127i)11-s + (0.577 + 0.484i)13-s + (1.14 + 0.848i)14-s + (−0.993 − 0.109i)16-s + (−0.130 + 0.225i)17-s + (−0.822 + 0.474i)19-s + (0.191 + 0.630i)20-s + (−0.124 + 0.0540i)22-s + (−1.36 − 0.240i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0472 - 0.998i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0472 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(324\)    =    \(2^{2} \cdot 3^{4}\)
Sign: $-0.0472 - 0.998i$
Analytic conductor: \(8.82836\)
Root analytic conductor: \(2.97125\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{324} (199, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 324,\ (\ :1),\ -0.0472 - 0.998i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.320639 + 0.336175i\)
\(L(\frac12)\) \(\approx\) \(0.320639 + 0.336175i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.37 + 1.45i)T \)
3 \( 1 \)
good5 \( 1 + (-3.09 + 1.12i)T + (19.1 - 16.0i)T^{2} \)
7 \( 1 + (9.81 - 1.73i)T + (46.0 - 16.7i)T^{2} \)
11 \( 1 + (-0.511 + 1.40i)T + (-92.6 - 77.7i)T^{2} \)
13 \( 1 + (-7.50 - 6.29i)T + (29.3 + 166. i)T^{2} \)
17 \( 1 + (2.21 - 3.83i)T + (-144.5 - 250. i)T^{2} \)
19 \( 1 + (15.6 - 9.02i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (31.4 + 5.54i)T + (497. + 180. i)T^{2} \)
29 \( 1 + (17.2 - 14.4i)T + (146. - 828. i)T^{2} \)
31 \( 1 + (-42.5 - 7.50i)T + (903. + 328. i)T^{2} \)
37 \( 1 + (35.6 - 61.7i)T + (-684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (-2.00 - 1.68i)T + (291. + 1.65e3i)T^{2} \)
43 \( 1 + (15.2 - 41.8i)T + (-1.41e3 - 1.18e3i)T^{2} \)
47 \( 1 + (-8.16 + 1.43i)T + (2.07e3 - 755. i)T^{2} \)
53 \( 1 - 54.0T + 2.80e3T^{2} \)
59 \( 1 + (-31.7 - 87.3i)T + (-2.66e3 + 2.23e3i)T^{2} \)
61 \( 1 + (14.4 + 81.7i)T + (-3.49e3 + 1.27e3i)T^{2} \)
67 \( 1 + (45.3 - 53.9i)T + (-779. - 4.42e3i)T^{2} \)
71 \( 1 + (95.6 + 55.2i)T + (2.52e3 + 4.36e3i)T^{2} \)
73 \( 1 + (28.1 + 48.7i)T + (-2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (-68.8 - 82.0i)T + (-1.08e3 + 6.14e3i)T^{2} \)
83 \( 1 + (21.4 + 25.5i)T + (-1.19e3 + 6.78e3i)T^{2} \)
89 \( 1 + (9.14 + 15.8i)T + (-3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (69.4 + 25.2i)T + (7.20e3 + 6.04e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.67067578204064379603949813323, −10.38114567666972694923821934908, −9.891820565095949261401880393526, −8.998512103478919055861445146830, −8.224588796054812379233652636408, −6.74668575986538024489085697381, −5.99073230296121712319682106071, −4.17889523699734731704118190319, −3.05073156554528711753471466243, −1.68577767086935310354805551506, 0.26303294097430944233555020391, 2.27214210226752065869794983413, 3.98982438304290813907172768688, 5.69573280159241094252100978165, 6.31270462598368645306976607779, 7.18202865972096239561790034112, 8.366302320800697409289233780981, 9.351959744792775490878179066871, 10.07927252799433196032490205657, 10.66311245723300385060733864969

Graph of the $Z$-function along the critical line