Properties

Label 2-18e2-108.103-c2-0-13
Degree $2$
Conductor $324$
Sign $0.966 + 0.257i$
Analytic cond. $8.82836$
Root an. cond. $2.97125$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.99 − 0.0489i)2-s + (3.99 + 0.195i)4-s + (−3.75 + 1.36i)5-s + (−12.2 + 2.15i)7-s + (−7.97 − 0.586i)8-s + (7.57 − 2.54i)10-s + (5.05 − 13.8i)11-s + (8.77 + 7.35i)13-s + (24.5 − 3.70i)14-s + (15.9 + 1.56i)16-s + (−2.73 + 4.73i)17-s + (20.0 − 11.5i)19-s + (−15.2 + 4.72i)20-s + (−10.7 + 27.5i)22-s + (15.3 + 2.70i)23-s + ⋯
L(s)  = 1  + (−0.999 − 0.0244i)2-s + (0.998 + 0.0489i)4-s + (−0.751 + 0.273i)5-s + (−1.74 + 0.307i)7-s + (−0.997 − 0.0733i)8-s + (0.757 − 0.254i)10-s + (0.459 − 1.26i)11-s + (0.674 + 0.566i)13-s + (1.75 − 0.264i)14-s + (0.995 + 0.0977i)16-s + (−0.160 + 0.278i)17-s + (1.05 − 0.608i)19-s + (−0.763 + 0.236i)20-s + (−0.490 + 1.25i)22-s + (0.666 + 0.117i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.966 + 0.257i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.966 + 0.257i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(324\)    =    \(2^{2} \cdot 3^{4}\)
Sign: $0.966 + 0.257i$
Analytic conductor: \(8.82836\)
Root analytic conductor: \(2.97125\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{324} (199, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 324,\ (\ :1),\ 0.966 + 0.257i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.688799 - 0.0902563i\)
\(L(\frac12)\) \(\approx\) \(0.688799 - 0.0902563i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.99 + 0.0489i)T \)
3 \( 1 \)
good5 \( 1 + (3.75 - 1.36i)T + (19.1 - 16.0i)T^{2} \)
7 \( 1 + (12.2 - 2.15i)T + (46.0 - 16.7i)T^{2} \)
11 \( 1 + (-5.05 + 13.8i)T + (-92.6 - 77.7i)T^{2} \)
13 \( 1 + (-8.77 - 7.35i)T + (29.3 + 166. i)T^{2} \)
17 \( 1 + (2.73 - 4.73i)T + (-144.5 - 250. i)T^{2} \)
19 \( 1 + (-20.0 + 11.5i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (-15.3 - 2.70i)T + (497. + 180. i)T^{2} \)
29 \( 1 + (-16.7 + 14.0i)T + (146. - 828. i)T^{2} \)
31 \( 1 + (-11.7 - 2.07i)T + (903. + 328. i)T^{2} \)
37 \( 1 + (6.45 - 11.1i)T + (-684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (-55.7 - 46.7i)T + (291. + 1.65e3i)T^{2} \)
43 \( 1 + (-20.3 + 55.8i)T + (-1.41e3 - 1.18e3i)T^{2} \)
47 \( 1 + (-20.2 + 3.56i)T + (2.07e3 - 755. i)T^{2} \)
53 \( 1 - 16.2T + 2.80e3T^{2} \)
59 \( 1 + (6.75 + 18.5i)T + (-2.66e3 + 2.23e3i)T^{2} \)
61 \( 1 + (-5.25 - 29.8i)T + (-3.49e3 + 1.27e3i)T^{2} \)
67 \( 1 + (-52.6 + 62.8i)T + (-779. - 4.42e3i)T^{2} \)
71 \( 1 + (36.4 + 21.0i)T + (2.52e3 + 4.36e3i)T^{2} \)
73 \( 1 + (44.1 + 76.5i)T + (-2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (38.2 + 45.5i)T + (-1.08e3 + 6.14e3i)T^{2} \)
83 \( 1 + (1.27 + 1.52i)T + (-1.19e3 + 6.78e3i)T^{2} \)
89 \( 1 + (45.8 + 79.3i)T + (-3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (-64.3 - 23.4i)T + (7.20e3 + 6.04e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.35690694103818191692518454875, −10.35693740429259404439424633369, −9.273055273055975229244517653211, −8.815490228457773925055268367764, −7.56943998211088796556900759685, −6.58733216952329734935154285089, −5.95200548458149694843809690123, −3.65359325228777145536733074026, −2.92543189840607120820031342606, −0.68345955508822257292515301078, 0.850617674520974600600967709479, 2.89001347678084189442867440273, 4.00298734036294593585015868934, 5.85646646614068525530534353171, 6.91913565220861300213779708400, 7.53996152054866028427287786974, 8.750971200624370255781678535132, 9.636474667247975718498160676802, 10.19196896599335704807267111857, 11.32590282819197494702420577944

Graph of the $Z$-function along the critical line