Properties

Label 2-18e2-1.1-c3-0-11
Degree $2$
Conductor $324$
Sign $-1$
Analytic cond. $19.1166$
Root an. cond. $4.37225$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12.7·5-s − 14.0·7-s − 42.5·11-s − 72.4·13-s − 59.6·17-s + 105.·19-s − 0.225·23-s + 37.3·25-s − 225.·29-s + 201.·31-s − 179.·35-s − 152.·37-s − 489.·41-s − 7.58·43-s + 373.·47-s − 145.·49-s − 43.6·53-s − 542.·55-s − 671.·59-s + 74.0·61-s − 923.·65-s + 420.·67-s − 730.·71-s + 473.·73-s + 597.·77-s − 529.·79-s + 26.1·83-s + ⋯
L(s)  = 1  + 1.13·5-s − 0.758·7-s − 1.16·11-s − 1.54·13-s − 0.850·17-s + 1.27·19-s − 0.00204·23-s + 0.298·25-s − 1.44·29-s + 1.16·31-s − 0.864·35-s − 0.679·37-s − 1.86·41-s − 0.0269·43-s + 1.15·47-s − 0.424·49-s − 0.113·53-s − 1.32·55-s − 1.48·59-s + 0.155·61-s − 1.76·65-s + 0.767·67-s − 1.22·71-s + 0.759·73-s + 0.884·77-s − 0.754·79-s + 0.0345·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(324\)    =    \(2^{2} \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(19.1166\)
Root analytic conductor: \(4.37225\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 324,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 12.7T + 125T^{2} \)
7 \( 1 + 14.0T + 343T^{2} \)
11 \( 1 + 42.5T + 1.33e3T^{2} \)
13 \( 1 + 72.4T + 2.19e3T^{2} \)
17 \( 1 + 59.6T + 4.91e3T^{2} \)
19 \( 1 - 105.T + 6.85e3T^{2} \)
23 \( 1 + 0.225T + 1.21e4T^{2} \)
29 \( 1 + 225.T + 2.43e4T^{2} \)
31 \( 1 - 201.T + 2.97e4T^{2} \)
37 \( 1 + 152.T + 5.06e4T^{2} \)
41 \( 1 + 489.T + 6.89e4T^{2} \)
43 \( 1 + 7.58T + 7.95e4T^{2} \)
47 \( 1 - 373.T + 1.03e5T^{2} \)
53 \( 1 + 43.6T + 1.48e5T^{2} \)
59 \( 1 + 671.T + 2.05e5T^{2} \)
61 \( 1 - 74.0T + 2.26e5T^{2} \)
67 \( 1 - 420.T + 3.00e5T^{2} \)
71 \( 1 + 730.T + 3.57e5T^{2} \)
73 \( 1 - 473.T + 3.89e5T^{2} \)
79 \( 1 + 529.T + 4.93e5T^{2} \)
83 \( 1 - 26.1T + 5.71e5T^{2} \)
89 \( 1 - 415.T + 7.04e5T^{2} \)
97 \( 1 - 927.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.38900532666365602113775101160, −9.855030185168319982453673901183, −9.127346057678020024502385748460, −7.72231481723388174492355720391, −6.81117418023576809461801940969, −5.66535193921582085225455563071, −4.89001282112252787716928740941, −3.06813069151916590019877419157, −2.06994792899353805548013460186, 0, 2.06994792899353805548013460186, 3.06813069151916590019877419157, 4.89001282112252787716928740941, 5.66535193921582085225455563071, 6.81117418023576809461801940969, 7.72231481723388174492355720391, 9.127346057678020024502385748460, 9.855030185168319982453673901183, 10.38900532666365602113775101160

Graph of the $Z$-function along the critical line