L(s) = 1 | + (0.5 + 0.866i)2-s + (0.500 − 0.866i)4-s + (−2 − 3.46i)5-s + (2 + 1.73i)7-s + 3·8-s + (1.99 − 3.46i)10-s + (1 − 1.73i)11-s + 13-s + (−0.499 + 2.59i)14-s + (0.500 + 0.866i)16-s + (−3 + 5.19i)17-s + (−2 − 3.46i)19-s − 4·20-s + 1.99·22-s + (3 + 5.19i)23-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.250 − 0.433i)4-s + (−0.894 − 1.54i)5-s + (0.755 + 0.654i)7-s + 1.06·8-s + (0.632 − 1.09i)10-s + (0.301 − 0.522i)11-s + 0.277·13-s + (−0.133 + 0.694i)14-s + (0.125 + 0.216i)16-s + (−0.727 + 1.26i)17-s + (−0.458 − 0.794i)19-s − 0.894·20-s + 0.426·22-s + (0.625 + 1.08i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 + 0.250i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.968 + 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.43149 - 0.182420i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.43149 - 0.182420i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-2 - 1.73i)T \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (2 + 3.46i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - T + 13T^{2} \) |
| 17 | \( 1 + (3 - 5.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2 + 3.46i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3 - 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 + (1.5 - 2.59i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.5 + 2.59i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 + T + 43T^{2} \) |
| 47 | \( 1 + (-3 - 5.19i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3 - 5.19i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3 + 5.19i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.5 - 4.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.5 - 6.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (-3 + 5.19i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.5 + 9.52i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 6T + 83T^{2} \) |
| 89 | \( 1 + (2 + 3.46i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.66325444120093442589088370226, −11.52135417211737529592403696610, −10.91163410613688514849341903148, −9.097171371402099595716051490550, −8.491108875433920823632139901996, −7.46298497246863215298517608625, −5.98028871689103106929561727479, −5.06267473736550086588148582320, −4.14387406148145574160586639230, −1.48624052642395739323500039129,
2.36587211598253029337752680266, 3.63529057435228304430447279733, 4.52109332697467195722041791113, 6.77741518484778729195316987935, 7.31358002864404554212208615440, 8.300079537147651787454175107691, 10.14691296986573405702794469107, 11.02764885332401663289194776595, 11.40145777942347560492962968641, 12.34746182005289072543014347442