L(s) = 1 | + (1.72 − 0.304i)2-s + (1.65 − 0.499i)3-s + (1.01 − 0.370i)4-s + (−0.0612 + 0.347i)5-s + (2.71 − 1.36i)6-s + (−2.64 + 0.150i)7-s + (−1.39 + 0.805i)8-s + (2.50 − 1.65i)9-s + 0.618i·10-s + (0.991 − 0.174i)11-s + (1.50 − 1.12i)12-s + (−0.216 + 0.258i)13-s + (−4.52 + 1.06i)14-s + (0.0717 + 0.606i)15-s + (−3.82 + 3.20i)16-s − 5.22·17-s + ⋯ |
L(s) = 1 | + (1.22 − 0.215i)2-s + (0.957 − 0.288i)3-s + (0.508 − 0.185i)4-s + (−0.0273 + 0.155i)5-s + (1.10 − 0.558i)6-s + (−0.998 + 0.0567i)7-s + (−0.493 + 0.284i)8-s + (0.833 − 0.551i)9-s + 0.195i·10-s + (0.299 − 0.0527i)11-s + (0.433 − 0.323i)12-s + (−0.0600 + 0.0715i)13-s + (−1.20 + 0.284i)14-s + (0.0185 + 0.156i)15-s + (−0.956 + 0.802i)16-s − 1.26·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.937 + 0.349i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.937 + 0.349i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.31722 - 0.417735i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.31722 - 0.417735i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.65 + 0.499i)T \) |
| 7 | \( 1 + (2.64 - 0.150i)T \) |
good | 2 | \( 1 + (-1.72 + 0.304i)T + (1.87 - 0.684i)T^{2} \) |
| 5 | \( 1 + (0.0612 - 0.347i)T + (-4.69 - 1.71i)T^{2} \) |
| 11 | \( 1 + (-0.991 + 0.174i)T + (10.3 - 3.76i)T^{2} \) |
| 13 | \( 1 + (0.216 - 0.258i)T + (-2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + 5.22T + 17T^{2} \) |
| 19 | \( 1 + 0.554iT - 19T^{2} \) |
| 23 | \( 1 + (-1.52 + 1.81i)T + (-3.99 - 22.6i)T^{2} \) |
| 29 | \( 1 + (-0.750 - 0.893i)T + (-5.03 + 28.5i)T^{2} \) |
| 31 | \( 1 + (0.597 + 1.64i)T + (-23.7 + 19.9i)T^{2} \) |
| 37 | \( 1 + (-3.07 - 5.31i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (8.82 + 7.40i)T + (7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (-5.78 - 2.10i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (-5.19 - 1.88i)T + (36.0 + 30.2i)T^{2} \) |
| 53 | \( 1 + (-3.63 + 2.10i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (10.1 + 8.51i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (4.82 - 13.2i)T + (-46.7 - 39.2i)T^{2} \) |
| 67 | \( 1 + (-1.45 + 8.25i)T + (-62.9 - 22.9i)T^{2} \) |
| 71 | \( 1 + (9.96 + 5.75i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-6.89 - 3.97i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.05 - 11.6i)T + (-74.2 + 27.0i)T^{2} \) |
| 83 | \( 1 + (-2.81 + 2.36i)T + (14.4 - 81.7i)T^{2} \) |
| 89 | \( 1 - 3.99T + 89T^{2} \) |
| 97 | \( 1 + (-5.45 + 14.9i)T + (-74.3 - 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.80882675370763814464918556460, −12.00549426947225368758313364003, −10.70977347936077001989816164931, −9.321145073792492569721723835032, −8.672592455615827120682751927198, −7.04736656775189715803775796063, −6.24131930865771214350709889221, −4.60433782306069083517245711777, −3.50005731502664630786715743580, −2.52111318107597492712608198647,
2.74639514985581887733756317935, 3.83437413887676720562410677014, 4.79857182200407486797239782968, 6.25861526776930182131635097392, 7.21459113210756775535254924918, 8.808178864728483414439769748813, 9.439192560726753426127107691996, 10.63584651077380853428224541250, 12.12624962180681433764222460125, 13.01119417592905550747859661119