Properties

Label 2-189-189.47-c1-0-1
Degree $2$
Conductor $189$
Sign $-0.739 - 0.673i$
Analytic cond. $1.50917$
Root an. cond. $1.22848$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.38 − 0.244i)2-s + (−0.458 + 1.67i)3-s + (−0.0163 − 0.00595i)4-s + (1.98 + 0.721i)5-s + (1.04 − 2.20i)6-s + (−2.18 + 1.49i)7-s + (2.46 + 1.42i)8-s + (−2.57 − 1.53i)9-s + (−2.57 − 1.48i)10-s + (−1.26 − 3.48i)11-s + (0.0174 − 0.0245i)12-s + (−2.27 + 6.25i)13-s + (3.39 − 1.53i)14-s + (−2.11 + 2.98i)15-s + (−3.03 − 2.54i)16-s + (−1.61 + 2.80i)17-s + ⋯
L(s)  = 1  + (−0.980 − 0.172i)2-s + (−0.264 + 0.964i)3-s + (−0.00818 − 0.00297i)4-s + (0.886 + 0.322i)5-s + (0.426 − 0.899i)6-s + (−0.826 + 0.563i)7-s + (0.869 + 0.502i)8-s + (−0.859 − 0.510i)9-s + (−0.813 − 0.469i)10-s + (−0.381 − 1.04i)11-s + (0.00503 − 0.00710i)12-s + (−0.631 + 1.73i)13-s + (0.907 − 0.409i)14-s + (−0.545 + 0.769i)15-s + (−0.759 − 0.637i)16-s + (−0.392 + 0.680i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.739 - 0.673i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.739 - 0.673i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(189\)    =    \(3^{3} \cdot 7\)
Sign: $-0.739 - 0.673i$
Analytic conductor: \(1.50917\)
Root analytic conductor: \(1.22848\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{189} (47, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 189,\ (\ :1/2),\ -0.739 - 0.673i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.153882 + 0.397255i\)
\(L(\frac12)\) \(\approx\) \(0.153882 + 0.397255i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.458 - 1.67i)T \)
7 \( 1 + (2.18 - 1.49i)T \)
good2 \( 1 + (1.38 + 0.244i)T + (1.87 + 0.684i)T^{2} \)
5 \( 1 + (-1.98 - 0.721i)T + (3.83 + 3.21i)T^{2} \)
11 \( 1 + (1.26 + 3.48i)T + (-8.42 + 7.07i)T^{2} \)
13 \( 1 + (2.27 - 6.25i)T + (-9.95 - 8.35i)T^{2} \)
17 \( 1 + (1.61 - 2.80i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (4.61 - 2.66i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.689 + 0.121i)T + (21.6 - 7.86i)T^{2} \)
29 \( 1 + (-1.50 - 4.12i)T + (-22.2 + 18.6i)T^{2} \)
31 \( 1 + (0.513 - 1.41i)T + (-23.7 - 19.9i)T^{2} \)
37 \( 1 - 6.49T + 37T^{2} \)
41 \( 1 + (-10.4 - 3.81i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (-1.29 + 7.32i)T + (-40.4 - 14.7i)T^{2} \)
47 \( 1 + (5.63 - 2.05i)T + (36.0 - 30.2i)T^{2} \)
53 \( 1 + (-0.766 + 0.442i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (-4.77 + 4.00i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (-2.54 - 6.98i)T + (-46.7 + 39.2i)T^{2} \)
67 \( 1 + (-1.82 - 10.3i)T + (-62.9 + 22.9i)T^{2} \)
71 \( 1 + (3.83 - 2.21i)T + (35.5 - 61.4i)T^{2} \)
73 \( 1 - 3.06iT - 73T^{2} \)
79 \( 1 + (1.65 - 9.37i)T + (-74.2 - 27.0i)T^{2} \)
83 \( 1 + (-11.4 + 4.16i)T + (63.5 - 53.3i)T^{2} \)
89 \( 1 + (2.17 + 3.77i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (6.85 + 1.20i)T + (91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92194880227663347770775467342, −11.51673946208377901304120485049, −10.62685855598980932479217740796, −9.886147729679324378578067640624, −9.163041199296670826067194368814, −8.493002311808127290289564213561, −6.56104337563471079255274666902, −5.66242071433665895851426097210, −4.21198779683732818832485586620, −2.38621064467257904448767879291, 0.51952272149715405625242003550, 2.43593379331376190749460551959, 4.79832668344419113985879941256, 6.16744962866695762815975666538, 7.28903867421776247855252327966, 7.953682628464016803266528009784, 9.309930091601220907475581799136, 9.978999364125439908552765446619, 10.88628909157901642257281223156, 12.67509878557711873203004697863

Graph of the $Z$-function along the critical line