L(s) = 1 | + (1.72 + 0.304i)2-s + (1.65 + 0.499i)3-s + (1.01 + 0.370i)4-s + (−0.0612 − 0.347i)5-s + (2.71 + 1.36i)6-s + (−2.64 − 0.150i)7-s + (−1.39 − 0.805i)8-s + (2.50 + 1.65i)9-s − 0.618i·10-s + (0.991 + 0.174i)11-s + (1.50 + 1.12i)12-s + (−0.216 − 0.258i)13-s + (−4.52 − 1.06i)14-s + (0.0717 − 0.606i)15-s + (−3.82 − 3.20i)16-s − 5.22·17-s + ⋯ |
L(s) = 1 | + (1.22 + 0.215i)2-s + (0.957 + 0.288i)3-s + (0.508 + 0.185i)4-s + (−0.0273 − 0.155i)5-s + (1.10 + 0.558i)6-s + (−0.998 − 0.0567i)7-s + (−0.493 − 0.284i)8-s + (0.833 + 0.551i)9-s − 0.195i·10-s + (0.299 + 0.0527i)11-s + (0.433 + 0.323i)12-s + (−0.0600 − 0.0715i)13-s + (−1.20 − 0.284i)14-s + (0.0185 − 0.156i)15-s + (−0.956 − 0.802i)16-s − 1.26·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.937 - 0.349i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.937 - 0.349i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.31722 + 0.417735i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.31722 + 0.417735i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.65 - 0.499i)T \) |
| 7 | \( 1 + (2.64 + 0.150i)T \) |
good | 2 | \( 1 + (-1.72 - 0.304i)T + (1.87 + 0.684i)T^{2} \) |
| 5 | \( 1 + (0.0612 + 0.347i)T + (-4.69 + 1.71i)T^{2} \) |
| 11 | \( 1 + (-0.991 - 0.174i)T + (10.3 + 3.76i)T^{2} \) |
| 13 | \( 1 + (0.216 + 0.258i)T + (-2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + 5.22T + 17T^{2} \) |
| 19 | \( 1 - 0.554iT - 19T^{2} \) |
| 23 | \( 1 + (-1.52 - 1.81i)T + (-3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (-0.750 + 0.893i)T + (-5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (0.597 - 1.64i)T + (-23.7 - 19.9i)T^{2} \) |
| 37 | \( 1 + (-3.07 + 5.31i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (8.82 - 7.40i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (-5.78 + 2.10i)T + (32.9 - 27.6i)T^{2} \) |
| 47 | \( 1 + (-5.19 + 1.88i)T + (36.0 - 30.2i)T^{2} \) |
| 53 | \( 1 + (-3.63 - 2.10i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (10.1 - 8.51i)T + (10.2 - 58.1i)T^{2} \) |
| 61 | \( 1 + (4.82 + 13.2i)T + (-46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (-1.45 - 8.25i)T + (-62.9 + 22.9i)T^{2} \) |
| 71 | \( 1 + (9.96 - 5.75i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-6.89 + 3.97i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.05 + 11.6i)T + (-74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (-2.81 - 2.36i)T + (14.4 + 81.7i)T^{2} \) |
| 89 | \( 1 - 3.99T + 89T^{2} \) |
| 97 | \( 1 + (-5.45 - 14.9i)T + (-74.3 + 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.01119417592905550747859661119, −12.12624962180681433764222460125, −10.63584651077380853428224541250, −9.439192560726753426127107691996, −8.808178864728483414439769748813, −7.21459113210756775535254924918, −6.25861526776930182131635097392, −4.79857182200407486797239782968, −3.83437413887676720562410677014, −2.74639514985581887733756317935,
2.52111318107597492712608198647, 3.50005731502664630786715743580, 4.60433782306069083517245711777, 6.24131930865771214350709889221, 7.04736656775189715803775796063, 8.672592455615827120682751927198, 9.321145073792492569721723835032, 10.70977347936077001989816164931, 12.00549426947225368758313364003, 12.80882675370763814464918556460