Properties

Label 2-189-189.20-c1-0-0
Degree $2$
Conductor $189$
Sign $0.990 - 0.139i$
Analytic cond. $1.50917$
Root an. cond. $1.22848$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.752 − 2.06i)2-s + (−1.63 − 0.559i)3-s + (−2.17 + 1.82i)4-s + (0.562 + 3.19i)5-s + (0.0757 + 3.80i)6-s + (1.24 + 2.33i)7-s + (1.59 + 0.923i)8-s + (2.37 + 1.83i)9-s + (6.17 − 3.56i)10-s + (−3.18 − 0.560i)11-s + (4.58 − 1.77i)12-s + (−1.22 + 3.37i)13-s + (3.89 − 4.32i)14-s + (0.864 − 5.54i)15-s + (−0.280 + 1.59i)16-s + (−1.49 − 2.58i)17-s + ⋯
L(s)  = 1  + (−0.532 − 1.46i)2-s + (−0.946 − 0.323i)3-s + (−1.08 + 0.912i)4-s + (0.251 + 1.42i)5-s + (0.0309 + 1.55i)6-s + (0.468 + 0.883i)7-s + (0.565 + 0.326i)8-s + (0.790 + 0.611i)9-s + (1.95 − 1.12i)10-s + (−0.958 − 0.169i)11-s + (1.32 − 0.512i)12-s + (−0.340 + 0.935i)13-s + (1.04 − 1.15i)14-s + (0.223 − 1.43i)15-s + (−0.0701 + 0.397i)16-s + (−0.361 − 0.626i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.990 - 0.139i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.990 - 0.139i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(189\)    =    \(3^{3} \cdot 7\)
Sign: $0.990 - 0.139i$
Analytic conductor: \(1.50917\)
Root analytic conductor: \(1.22848\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{189} (20, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 189,\ (\ :1/2),\ 0.990 - 0.139i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.542797 + 0.0381738i\)
\(L(\frac12)\) \(\approx\) \(0.542797 + 0.0381738i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.63 + 0.559i)T \)
7 \( 1 + (-1.24 - 2.33i)T \)
good2 \( 1 + (0.752 + 2.06i)T + (-1.53 + 1.28i)T^{2} \)
5 \( 1 + (-0.562 - 3.19i)T + (-4.69 + 1.71i)T^{2} \)
11 \( 1 + (3.18 + 0.560i)T + (10.3 + 3.76i)T^{2} \)
13 \( 1 + (1.22 - 3.37i)T + (-9.95 - 8.35i)T^{2} \)
17 \( 1 + (1.49 + 2.58i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-3.49 - 2.01i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (0.441 + 0.526i)T + (-3.99 + 22.6i)T^{2} \)
29 \( 1 + (-3.33 - 9.15i)T + (-22.2 + 18.6i)T^{2} \)
31 \( 1 + (-0.311 - 0.371i)T + (-5.38 + 30.5i)T^{2} \)
37 \( 1 + (-2.82 - 4.88i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (1.84 + 0.671i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (-1.32 + 7.48i)T + (-40.4 - 14.7i)T^{2} \)
47 \( 1 + (6.71 + 5.63i)T + (8.16 + 46.2i)T^{2} \)
53 \( 1 - 3.11iT - 53T^{2} \)
59 \( 1 + (-1.95 - 11.0i)T + (-55.4 + 20.1i)T^{2} \)
61 \( 1 + (-3.09 + 3.68i)T + (-10.5 - 60.0i)T^{2} \)
67 \( 1 + (8.93 + 3.25i)T + (51.3 + 43.0i)T^{2} \)
71 \( 1 + (2.67 - 1.54i)T + (35.5 - 61.4i)T^{2} \)
73 \( 1 + (9.91 + 5.72i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (-6.20 + 2.25i)T + (60.5 - 50.7i)T^{2} \)
83 \( 1 + (-16.4 + 6.00i)T + (63.5 - 53.3i)T^{2} \)
89 \( 1 + (-3.48 + 6.03i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-2.47 - 0.436i)T + (91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.94503654909055147471681475812, −11.65835293993188151043019901255, −10.65085780303950369313984678225, −10.18594425544932122492301106266, −8.947998682947905244866043803377, −7.46588934878135424351596884074, −6.34334035733611722064355034980, −4.98643668233193755308491093540, −3.02033684185588686153414403614, −1.95607085145242010205044208988, 0.65401344532198419386851560116, 4.58097414572836478659188007569, 5.20375429525797054374963562308, 6.16770741364641617015380715563, 7.56015696398844593475090207618, 8.186530383467861705560559077884, 9.485934748358767354490658723830, 10.22059871015534430129047088797, 11.50312892134405308631339596181, 12.77528574839594413238372440913

Graph of the $Z$-function along the critical line