Properties

Label 2-189-189.142-c1-0-3
Degree $2$
Conductor $189$
Sign $-0.890 - 0.454i$
Analytic cond. $1.50917$
Root an. cond. $1.22848$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.324 + 1.83i)2-s + (0.743 + 1.56i)3-s + (−1.39 − 0.507i)4-s + (1.37 + 0.500i)5-s + (−3.11 + 0.860i)6-s + (−2.42 − 1.06i)7-s + (−0.481 + 0.833i)8-s + (−1.89 + 2.32i)9-s + (−1.36 + 2.36i)10-s + (4.29 − 1.56i)11-s + (−0.243 − 2.55i)12-s + (0.925 + 0.336i)13-s + (2.73 − 4.11i)14-s + (0.240 + 2.52i)15-s + (−3.65 − 3.06i)16-s + (0.620 − 1.07i)17-s + ⋯
L(s)  = 1  + (−0.229 + 1.29i)2-s + (0.429 + 0.903i)3-s + (−0.697 − 0.253i)4-s + (0.614 + 0.223i)5-s + (−1.27 + 0.351i)6-s + (−0.916 − 0.400i)7-s + (−0.170 + 0.294i)8-s + (−0.631 + 0.775i)9-s + (−0.431 + 0.747i)10-s + (1.29 − 0.470i)11-s + (−0.0703 − 0.738i)12-s + (0.256 + 0.0934i)13-s + (0.731 − 1.09i)14-s + (0.0619 + 0.651i)15-s + (−0.912 − 0.765i)16-s + (0.150 − 0.260i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.890 - 0.454i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.890 - 0.454i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(189\)    =    \(3^{3} \cdot 7\)
Sign: $-0.890 - 0.454i$
Analytic conductor: \(1.50917\)
Root analytic conductor: \(1.22848\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{189} (142, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 189,\ (\ :1/2),\ -0.890 - 0.454i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.287787 + 1.19754i\)
\(L(\frac12)\) \(\approx\) \(0.287787 + 1.19754i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.743 - 1.56i)T \)
7 \( 1 + (2.42 + 1.06i)T \)
good2 \( 1 + (0.324 - 1.83i)T + (-1.87 - 0.684i)T^{2} \)
5 \( 1 + (-1.37 - 0.500i)T + (3.83 + 3.21i)T^{2} \)
11 \( 1 + (-4.29 + 1.56i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (-0.925 - 0.336i)T + (9.95 + 8.35i)T^{2} \)
17 \( 1 + (-0.620 + 1.07i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (0.718 + 1.24i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.165 - 0.939i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (-5.18 + 1.88i)T + (22.2 - 18.6i)T^{2} \)
31 \( 1 + (-6.28 - 2.28i)T + (23.7 + 19.9i)T^{2} \)
37 \( 1 + 2.88T + 37T^{2} \)
41 \( 1 + (-11.1 - 4.06i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (-0.559 + 3.17i)T + (-40.4 - 14.7i)T^{2} \)
47 \( 1 + (10.6 - 3.87i)T + (36.0 - 30.2i)T^{2} \)
53 \( 1 + (-2.32 - 4.02i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (4.83 - 4.05i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (4.93 - 1.79i)T + (46.7 - 39.2i)T^{2} \)
67 \( 1 + (2.28 + 12.9i)T + (-62.9 + 22.9i)T^{2} \)
71 \( 1 + (5.80 + 10.0i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 - 9.93T + 73T^{2} \)
79 \( 1 + (-2.45 + 13.9i)T + (-74.2 - 27.0i)T^{2} \)
83 \( 1 + (7.82 - 2.84i)T + (63.5 - 53.3i)T^{2} \)
89 \( 1 + (-0.307 - 0.532i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (0.991 - 5.62i)T + (-91.1 - 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.72102506551260581355749038150, −11.93494056195088394504997810313, −10.71534979748085195635523020935, −9.599230147980641670500040189027, −9.048776079280709871907112044300, −7.931259630402854638937171609842, −6.56948505876294565341410335677, −6.00214177891651617823703166597, −4.46420033689462124059004815469, −2.99937067004199675213848782258, 1.34118974774337482904828733258, 2.58261974146125850629245356732, 3.81270999100914473921519899826, 6.06824812388152037640727398065, 6.80111661468236647867238129756, 8.516693396443237221447815143372, 9.391863910685965135151081716186, 9.995155751354349289940540137876, 11.42676566856940048833084060303, 12.25964182570559626977871170695

Graph of the $Z$-function along the critical line