Properties

Label 2-1881-1.1-c1-0-6
Degree $2$
Conductor $1881$
Sign $1$
Analytic cond. $15.0198$
Root an. cond. $3.87554$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.65·2-s + 5.04·4-s + 1.06·5-s − 3.36·7-s − 8.08·8-s − 2.81·10-s − 11-s − 2.15·13-s + 8.94·14-s + 11.3·16-s − 3.67·17-s − 19-s + 5.34·20-s + 2.65·22-s − 3.15·23-s − 3.87·25-s + 5.73·26-s − 16.9·28-s − 7.17·29-s + 4.65·31-s − 14.0·32-s + 9.74·34-s − 3.57·35-s + 2.27·37-s + 2.65·38-s − 8.57·40-s + 11.3·41-s + ⋯
L(s)  = 1  − 1.87·2-s + 2.52·4-s + 0.474·5-s − 1.27·7-s − 2.85·8-s − 0.889·10-s − 0.301·11-s − 0.599·13-s + 2.38·14-s + 2.84·16-s − 0.890·17-s − 0.229·19-s + 1.19·20-s + 0.565·22-s − 0.657·23-s − 0.775·25-s + 1.12·26-s − 3.21·28-s − 1.33·29-s + 0.835·31-s − 2.47·32-s + 1.67·34-s − 0.603·35-s + 0.373·37-s + 0.430·38-s − 1.35·40-s + 1.77·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1881\)    =    \(3^{2} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(15.0198\)
Root analytic conductor: \(3.87554\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1881,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4280313669\)
\(L(\frac12)\) \(\approx\) \(0.4280313669\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 + T \)
19 \( 1 + T \)
good2 \( 1 + 2.65T + 2T^{2} \)
5 \( 1 - 1.06T + 5T^{2} \)
7 \( 1 + 3.36T + 7T^{2} \)
13 \( 1 + 2.15T + 13T^{2} \)
17 \( 1 + 3.67T + 17T^{2} \)
23 \( 1 + 3.15T + 23T^{2} \)
29 \( 1 + 7.17T + 29T^{2} \)
31 \( 1 - 4.65T + 31T^{2} \)
37 \( 1 - 2.27T + 37T^{2} \)
41 \( 1 - 11.3T + 41T^{2} \)
43 \( 1 - 9.38T + 43T^{2} \)
47 \( 1 - 5.77T + 47T^{2} \)
53 \( 1 - 5.65T + 53T^{2} \)
59 \( 1 - 13.7T + 59T^{2} \)
61 \( 1 - 6.98T + 61T^{2} \)
67 \( 1 + 4.81T + 67T^{2} \)
71 \( 1 + 15.2T + 71T^{2} \)
73 \( 1 + 8.08T + 73T^{2} \)
79 \( 1 - 13.4T + 79T^{2} \)
83 \( 1 + 9.96T + 83T^{2} \)
89 \( 1 - 4.61T + 89T^{2} \)
97 \( 1 + 4.09T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.252304432336421522553188410121, −8.735817109893949549785562938463, −7.64550271866901835071107980018, −7.19276288212777587880262687340, −6.22099752933437087802647809676, −5.79709006615324615694050315853, −4.04555108405541021466159778088, −2.67737399258020249531100234125, −2.13378401329831132052542402961, −0.54812746548476363085740567997, 0.54812746548476363085740567997, 2.13378401329831132052542402961, 2.67737399258020249531100234125, 4.04555108405541021466159778088, 5.79709006615324615694050315853, 6.22099752933437087802647809676, 7.19276288212777587880262687340, 7.64550271866901835071107980018, 8.735817109893949549785562938463, 9.252304432336421522553188410121

Graph of the $Z$-function along the critical line