Properties

Label 2-1881-1.1-c1-0-38
Degree $2$
Conductor $1881$
Sign $1$
Analytic cond. $15.0198$
Root an. cond. $3.87554$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.61·2-s + 4.82·4-s − 4.07·5-s + 3.61·7-s + 7.39·8-s − 10.6·10-s + 11-s − 1.47·13-s + 9.45·14-s + 9.66·16-s + 3.27·17-s + 19-s − 19.6·20-s + 2.61·22-s + 7.45·23-s + 11.6·25-s − 3.86·26-s + 17.4·28-s − 1.02·29-s + 1.64·31-s + 10.4·32-s + 8.54·34-s − 14.7·35-s − 6.71·37-s + 2.61·38-s − 30.1·40-s + 3.92·41-s + ⋯
L(s)  = 1  + 1.84·2-s + 2.41·4-s − 1.82·5-s + 1.36·7-s + 2.61·8-s − 3.36·10-s + 0.301·11-s − 0.410·13-s + 2.52·14-s + 2.41·16-s + 0.793·17-s + 0.229·19-s − 4.40·20-s + 0.557·22-s + 1.55·23-s + 2.32·25-s − 0.757·26-s + 3.30·28-s − 0.190·29-s + 0.296·31-s + 1.85·32-s + 1.46·34-s − 2.49·35-s − 1.10·37-s + 0.423·38-s − 4.76·40-s + 0.612·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1881\)    =    \(3^{2} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(15.0198\)
Root analytic conductor: \(3.87554\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1881,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.008402077\)
\(L(\frac12)\) \(\approx\) \(5.008402077\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 - T \)
19 \( 1 - T \)
good2 \( 1 - 2.61T + 2T^{2} \)
5 \( 1 + 4.07T + 5T^{2} \)
7 \( 1 - 3.61T + 7T^{2} \)
13 \( 1 + 1.47T + 13T^{2} \)
17 \( 1 - 3.27T + 17T^{2} \)
23 \( 1 - 7.45T + 23T^{2} \)
29 \( 1 + 1.02T + 29T^{2} \)
31 \( 1 - 1.64T + 31T^{2} \)
37 \( 1 + 6.71T + 37T^{2} \)
41 \( 1 - 3.92T + 41T^{2} \)
43 \( 1 - 5.38T + 43T^{2} \)
47 \( 1 - 3.71T + 47T^{2} \)
53 \( 1 - 0.102T + 53T^{2} \)
59 \( 1 + 13.2T + 59T^{2} \)
61 \( 1 + 6.49T + 61T^{2} \)
67 \( 1 + 3.70T + 67T^{2} \)
71 \( 1 + 6.32T + 71T^{2} \)
73 \( 1 + 1.37T + 73T^{2} \)
79 \( 1 - 13.6T + 79T^{2} \)
83 \( 1 + 5.44T + 83T^{2} \)
89 \( 1 + 12.1T + 89T^{2} \)
97 \( 1 + 13.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.996621168830902758073874753867, −7.987391084397283949702801350945, −7.46753497005487261281183609159, −6.92604579839774860485591487784, −5.66298846613106537928684096284, −4.82585490054632765507610457510, −4.44093135603923078869639749746, −3.56537810870732679451359683539, −2.81663158388664963419337976073, −1.31593700445846289135337422907, 1.31593700445846289135337422907, 2.81663158388664963419337976073, 3.56537810870732679451359683539, 4.44093135603923078869639749746, 4.82585490054632765507610457510, 5.66298846613106537928684096284, 6.92604579839774860485591487784, 7.46753497005487261281183609159, 7.987391084397283949702801350945, 8.996621168830902758073874753867

Graph of the $Z$-function along the critical line