Properties

Label 2-1881-1.1-c1-0-33
Degree $2$
Conductor $1881$
Sign $-1$
Analytic cond. $15.0198$
Root an. cond. $3.87554$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.659·2-s − 1.56·4-s − 1.36·5-s − 4.12·7-s + 2.35·8-s + 0.901·10-s + 11-s + 5.19·13-s + 2.71·14-s + 1.58·16-s + 3.22·17-s + 19-s + 2.14·20-s − 0.659·22-s − 8.38·23-s − 3.12·25-s − 3.42·26-s + 6.45·28-s + 8.06·29-s + 2.96·31-s − 5.74·32-s − 2.12·34-s + 5.63·35-s + 4.26·37-s − 0.659·38-s − 3.21·40-s − 5.15·41-s + ⋯
L(s)  = 1  − 0.466·2-s − 0.782·4-s − 0.611·5-s − 1.55·7-s + 0.831·8-s + 0.285·10-s + 0.301·11-s + 1.44·13-s + 0.726·14-s + 0.395·16-s + 0.781·17-s + 0.229·19-s + 0.478·20-s − 0.140·22-s − 1.74·23-s − 0.625·25-s − 0.671·26-s + 1.21·28-s + 1.49·29-s + 0.532·31-s − 1.01·32-s − 0.364·34-s + 0.952·35-s + 0.701·37-s − 0.106·38-s − 0.508·40-s − 0.805·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1881 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1881\)    =    \(3^{2} \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(15.0198\)
Root analytic conductor: \(3.87554\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1881,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 - T \)
19 \( 1 - T \)
good2 \( 1 + 0.659T + 2T^{2} \)
5 \( 1 + 1.36T + 5T^{2} \)
7 \( 1 + 4.12T + 7T^{2} \)
13 \( 1 - 5.19T + 13T^{2} \)
17 \( 1 - 3.22T + 17T^{2} \)
23 \( 1 + 8.38T + 23T^{2} \)
29 \( 1 - 8.06T + 29T^{2} \)
31 \( 1 - 2.96T + 31T^{2} \)
37 \( 1 - 4.26T + 37T^{2} \)
41 \( 1 + 5.15T + 41T^{2} \)
43 \( 1 - 10.2T + 43T^{2} \)
47 \( 1 + 0.149T + 47T^{2} \)
53 \( 1 + 6.14T + 53T^{2} \)
59 \( 1 + 11.8T + 59T^{2} \)
61 \( 1 + 9.58T + 61T^{2} \)
67 \( 1 + 6.34T + 67T^{2} \)
71 \( 1 + 14.3T + 71T^{2} \)
73 \( 1 - 3.01T + 73T^{2} \)
79 \( 1 - 3.15T + 79T^{2} \)
83 \( 1 + 13.1T + 83T^{2} \)
89 \( 1 - 10.4T + 89T^{2} \)
97 \( 1 - 14.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.875012304351055577582776307706, −8.122050899981571035128086868535, −7.52273350650954286359075385661, −6.25972627105720736992773593151, −5.94831165281827373716970345736, −4.45918411025618372088073500529, −3.79915234127507938695078431538, −3.07218553585831349978409655560, −1.22865812950014865736965954955, 0, 1.22865812950014865736965954955, 3.07218553585831349978409655560, 3.79915234127507938695078431538, 4.45918411025618372088073500529, 5.94831165281827373716970345736, 6.25972627105720736992773593151, 7.52273350650954286359075385661, 8.122050899981571035128086868535, 8.875012304351055577582776307706

Graph of the $Z$-function along the critical line