# Properties

 Label 2-1875-1.1-c3-0-235 Degree $2$ Conductor $1875$ Sign $-1$ Analytic cond. $110.628$ Root an. cond. $10.5180$ Motivic weight $3$ Arithmetic yes Rational no Primitive yes Self-dual yes Analytic rank $1$

# Related objects

## Dirichlet series

 L(s)  = 1 + 3.90·2-s + 3·3-s + 7.26·4-s + 11.7·6-s + 22.0·7-s − 2.87·8-s + 9·9-s − 39.0·11-s + 21.7·12-s − 68.3·13-s + 86.3·14-s − 69.3·16-s + 100.·17-s + 35.1·18-s − 94.0·19-s + 66.2·21-s − 152.·22-s − 161.·23-s − 8.63·24-s − 267.·26-s + 27·27-s + 160.·28-s − 51.2·29-s − 260.·31-s − 247.·32-s − 117.·33-s + 394.·34-s + ⋯
 L(s)  = 1 + 1.38·2-s + 0.577·3-s + 0.907·4-s + 0.797·6-s + 1.19·7-s − 0.127·8-s + 0.333·9-s − 1.07·11-s + 0.524·12-s − 1.45·13-s + 1.64·14-s − 1.08·16-s + 1.43·17-s + 0.460·18-s − 1.13·19-s + 0.688·21-s − 1.47·22-s − 1.46·23-s − 0.0734·24-s − 2.01·26-s + 0.192·27-s + 1.08·28-s − 0.328·29-s − 1.50·31-s − 1.36·32-s − 0.618·33-s + 1.98·34-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$1875$$    =    $$3 \cdot 5^{4}$$ Sign: $-1$ Analytic conductor: $$110.628$$ Root analytic conductor: $$10.5180$$ Motivic weight: $$3$$ Rational: no Arithmetic: yes Character: $\chi_{1875} (1, \cdot )$ Primitive: yes Self-dual: yes Analytic rank: $$1$$ Selberg data: $$(2,\ 1875,\ (\ :3/2),\ -1)$$

## Particular Values

 $$L(2)$$ $$=$$ $$0$$ $$L(\frac12)$$ $$=$$ $$0$$ $$L(\frac{5}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1 - 3T$$
5 $$1$$
good2 $$1 - 3.90T + 8T^{2}$$
7 $$1 - 22.0T + 343T^{2}$$
11 $$1 + 39.0T + 1.33e3T^{2}$$
13 $$1 + 68.3T + 2.19e3T^{2}$$
17 $$1 - 100.T + 4.91e3T^{2}$$
19 $$1 + 94.0T + 6.85e3T^{2}$$
23 $$1 + 161.T + 1.21e4T^{2}$$
29 $$1 + 51.2T + 2.43e4T^{2}$$
31 $$1 + 260.T + 2.97e4T^{2}$$
37 $$1 + 86.6T + 5.06e4T^{2}$$
41 $$1 + 52.5T + 6.89e4T^{2}$$
43 $$1 + 53.3T + 7.95e4T^{2}$$
47 $$1 - 241.T + 1.03e5T^{2}$$
53 $$1 - 59.1T + 1.48e5T^{2}$$
59 $$1 + 648.T + 2.05e5T^{2}$$
61 $$1 - 655.T + 2.26e5T^{2}$$
67 $$1 - 778.T + 3.00e5T^{2}$$
71 $$1 - 224.T + 3.57e5T^{2}$$
73 $$1 - 348.T + 3.89e5T^{2}$$
79 $$1 - 161.T + 4.93e5T^{2}$$
83 $$1 + 39.8T + 5.71e5T^{2}$$
89 $$1 + 463.T + 7.04e5T^{2}$$
97 $$1 - 574.T + 9.12e5T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−8.132941004539225210822397889856, −7.77984650525961493810241226462, −6.86470401797366011631454483207, −5.57450980718598259595268840535, −5.22689354083239137812301527440, −4.37331160042583114957957423724, −3.59895832164155971650702882079, −2.49917853992084527121904364546, −1.91502751001159855911024172179, 0, 1.91502751001159855911024172179, 2.49917853992084527121904364546, 3.59895832164155971650702882079, 4.37331160042583114957957423724, 5.22689354083239137812301527440, 5.57450980718598259595268840535, 6.86470401797366011631454483207, 7.77984650525961493810241226462, 8.132941004539225210822397889856