L(s) = 1 | + 2.70·2-s + 3-s + 5.32·4-s + 2.70·6-s + 0.470·7-s + 8.99·8-s + 9-s − 3.18·11-s + 5.32·12-s + 0.563·13-s + 1.27·14-s + 13.7·16-s − 1.70·17-s + 2.70·18-s + 3.74·19-s + 0.470·21-s − 8.61·22-s − 2.26·23-s + 8.99·24-s + 1.52·26-s + 27-s + 2.50·28-s − 8.32·29-s + 5.43·31-s + 19.0·32-s − 3.18·33-s − 4.61·34-s + ⋯ |
L(s) = 1 | + 1.91·2-s + 0.577·3-s + 2.66·4-s + 1.10·6-s + 0.177·7-s + 3.18·8-s + 0.333·9-s − 0.959·11-s + 1.53·12-s + 0.156·13-s + 0.340·14-s + 3.42·16-s − 0.413·17-s + 0.637·18-s + 0.858·19-s + 0.102·21-s − 1.83·22-s − 0.473·23-s + 1.83·24-s + 0.299·26-s + 0.192·27-s + 0.473·28-s − 1.54·29-s + 0.976·31-s + 3.37·32-s − 0.553·33-s − 0.791·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(7.140201950\) |
\(L(\frac12)\) |
\(\approx\) |
\(7.140201950\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 2.70T + 2T^{2} \) |
| 7 | \( 1 - 0.470T + 7T^{2} \) |
| 11 | \( 1 + 3.18T + 11T^{2} \) |
| 13 | \( 1 - 0.563T + 13T^{2} \) |
| 17 | \( 1 + 1.70T + 17T^{2} \) |
| 19 | \( 1 - 3.74T + 19T^{2} \) |
| 23 | \( 1 + 2.26T + 23T^{2} \) |
| 29 | \( 1 + 8.32T + 29T^{2} \) |
| 31 | \( 1 - 5.43T + 31T^{2} \) |
| 37 | \( 1 - 1.02T + 37T^{2} \) |
| 41 | \( 1 - 1.47T + 41T^{2} \) |
| 43 | \( 1 - 6.72T + 43T^{2} \) |
| 47 | \( 1 + 4.43T + 47T^{2} \) |
| 53 | \( 1 + 7.05T + 53T^{2} \) |
| 59 | \( 1 + 12.8T + 59T^{2} \) |
| 61 | \( 1 - 0.126T + 61T^{2} \) |
| 67 | \( 1 + 2.79T + 67T^{2} \) |
| 71 | \( 1 - 16.0T + 71T^{2} \) |
| 73 | \( 1 + 9.78T + 73T^{2} \) |
| 79 | \( 1 + 4.75T + 79T^{2} \) |
| 83 | \( 1 - 11.6T + 83T^{2} \) |
| 89 | \( 1 + 6.20T + 89T^{2} \) |
| 97 | \( 1 - 8.45T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.307416444362207140165137116652, −7.947921582124019923367039444049, −7.61333265618931646549851847363, −6.61105896077978953567954110261, −5.81740036152896033280465309952, −5.03729246103247927089008975375, −4.31306932818624656674694980169, −3.39093853213543805150769537653, −2.67251453519567784684462333184, −1.71991579970782834998441634687,
1.71991579970782834998441634687, 2.67251453519567784684462333184, 3.39093853213543805150769537653, 4.31306932818624656674694980169, 5.03729246103247927089008975375, 5.81740036152896033280465309952, 6.61105896077978953567954110261, 7.61333265618931646549851847363, 7.947921582124019923367039444049, 9.307416444362207140165137116652