Properties

Label 2-1875-1.1-c1-0-67
Degree $2$
Conductor $1875$
Sign $-1$
Analytic cond. $14.9719$
Root an. cond. $3.86936$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.209·2-s + 3-s − 1.95·4-s + 0.209·6-s − 0.591·7-s − 0.827·8-s + 9-s − 0.870·11-s − 1.95·12-s − 1.15·13-s − 0.123·14-s + 3.73·16-s + 4.93·17-s + 0.209·18-s − 2.84·19-s − 0.591·21-s − 0.182·22-s − 6.91·23-s − 0.827·24-s − 0.240·26-s + 27-s + 1.15·28-s − 7.48·29-s + 3.45·31-s + 2.43·32-s − 0.870·33-s + 1.03·34-s + ⋯
L(s)  = 1  + 0.147·2-s + 0.577·3-s − 0.978·4-s + 0.0853·6-s − 0.223·7-s − 0.292·8-s + 0.333·9-s − 0.262·11-s − 0.564·12-s − 0.319·13-s − 0.0330·14-s + 0.934·16-s + 1.19·17-s + 0.0492·18-s − 0.653·19-s − 0.128·21-s − 0.0388·22-s − 1.44·23-s − 0.168·24-s − 0.0471·26-s + 0.192·27-s + 0.218·28-s − 1.39·29-s + 0.621·31-s + 0.430·32-s − 0.151·33-s + 0.176·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1875 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1875\)    =    \(3 \cdot 5^{4}\)
Sign: $-1$
Analytic conductor: \(14.9719\)
Root analytic conductor: \(3.86936\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1875,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
good2 \( 1 - 0.209T + 2T^{2} \)
7 \( 1 + 0.591T + 7T^{2} \)
11 \( 1 + 0.870T + 11T^{2} \)
13 \( 1 + 1.15T + 13T^{2} \)
17 \( 1 - 4.93T + 17T^{2} \)
19 \( 1 + 2.84T + 19T^{2} \)
23 \( 1 + 6.91T + 23T^{2} \)
29 \( 1 + 7.48T + 29T^{2} \)
31 \( 1 - 3.45T + 31T^{2} \)
37 \( 1 + 10.1T + 37T^{2} \)
41 \( 1 - 9.11T + 41T^{2} \)
43 \( 1 - 2.81T + 43T^{2} \)
47 \( 1 + 6.68T + 47T^{2} \)
53 \( 1 + 3.87T + 53T^{2} \)
59 \( 1 + 11.5T + 59T^{2} \)
61 \( 1 + 12.7T + 61T^{2} \)
67 \( 1 - 7.60T + 67T^{2} \)
71 \( 1 + 15.0T + 71T^{2} \)
73 \( 1 - 2.98T + 73T^{2} \)
79 \( 1 - 3.33T + 79T^{2} \)
83 \( 1 - 9.73T + 83T^{2} \)
89 \( 1 - 0.645T + 89T^{2} \)
97 \( 1 + 11.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.901688877228591264364502554278, −7.980360965887272952763674887469, −7.63477704886059674865191072043, −6.31781397284997921234492339817, −5.54354549028654799920121937230, −4.62159502210878517638389378135, −3.79771701275218674543732389836, −3.02169601939295454506829010473, −1.68715887675010045552248791215, 0, 1.68715887675010045552248791215, 3.02169601939295454506829010473, 3.79771701275218674543732389836, 4.62159502210878517638389378135, 5.54354549028654799920121937230, 6.31781397284997921234492339817, 7.63477704886059674865191072043, 7.980360965887272952763674887469, 8.901688877228591264364502554278

Graph of the $Z$-function along the critical line